LLVM OpenMP* Runtime Library
kmp_affinity.cpp
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 
23 // Store the real or imagined machine hierarchy here
24 static hierarchy_info machine_hierarchy;
25 
26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
27 
28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
29  kmp_uint32 depth;
30  // The test below is true if affinity is available, but set to "none". Need to
31  // init on first use of hierarchical barrier.
32  if (TCR_1(machine_hierarchy.uninitialized))
33  machine_hierarchy.init(NULL, nproc);
34 
35  // Adjust the hierarchy in case num threads exceeds original
36  if (nproc > machine_hierarchy.base_num_threads)
37  machine_hierarchy.resize(nproc);
38 
39  depth = machine_hierarchy.depth;
40  KMP_DEBUG_ASSERT(depth > 0);
41 
42  thr_bar->depth = depth;
43  thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
44  thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
45 }
46 
47 #if KMP_AFFINITY_SUPPORTED
48 
49 bool KMPAffinity::picked_api = false;
50 
51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
57 
58 void KMPAffinity::pick_api() {
59  KMPAffinity *affinity_dispatch;
60  if (picked_api)
61  return;
62 #if KMP_USE_HWLOC
63  // Only use Hwloc if affinity isn't explicitly disabled and
64  // user requests Hwloc topology method
65  if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
66  __kmp_affinity_type != affinity_disabled) {
67  affinity_dispatch = new KMPHwlocAffinity();
68  } else
69 #endif
70  {
71  affinity_dispatch = new KMPNativeAffinity();
72  }
73  __kmp_affinity_dispatch = affinity_dispatch;
74  picked_api = true;
75 }
76 
77 void KMPAffinity::destroy_api() {
78  if (__kmp_affinity_dispatch != NULL) {
79  delete __kmp_affinity_dispatch;
80  __kmp_affinity_dispatch = NULL;
81  picked_api = false;
82  }
83 }
84 
85 #define KMP_ADVANCE_SCAN(scan) \
86  while (*scan != '\0') { \
87  scan++; \
88  }
89 
90 // Print the affinity mask to the character array in a pretty format.
91 // The format is a comma separated list of non-negative integers or integer
92 // ranges: e.g., 1,2,3-5,7,9-15
93 // The format can also be the string "{<empty>}" if no bits are set in mask
94 char *__kmp_affinity_print_mask(char *buf, int buf_len,
95  kmp_affin_mask_t *mask) {
96  int start = 0, finish = 0, previous = 0;
97  bool first_range;
98  KMP_ASSERT(buf);
99  KMP_ASSERT(buf_len >= 40);
100  KMP_ASSERT(mask);
101  char *scan = buf;
102  char *end = buf + buf_len - 1;
103 
104  // Check for empty set.
105  if (mask->begin() == mask->end()) {
106  KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
107  KMP_ADVANCE_SCAN(scan);
108  KMP_ASSERT(scan <= end);
109  return buf;
110  }
111 
112  first_range = true;
113  start = mask->begin();
114  while (1) {
115  // Find next range
116  // [start, previous] is inclusive range of contiguous bits in mask
117  for (finish = mask->next(start), previous = start;
118  finish == previous + 1 && finish != mask->end();
119  finish = mask->next(finish)) {
120  previous = finish;
121  }
122 
123  // The first range does not need a comma printed before it, but the rest
124  // of the ranges do need a comma beforehand
125  if (!first_range) {
126  KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
127  KMP_ADVANCE_SCAN(scan);
128  } else {
129  first_range = false;
130  }
131  // Range with three or more contiguous bits in the affinity mask
132  if (previous - start > 1) {
133  KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
134  static_cast<int>(previous));
135  } else {
136  // Range with one or two contiguous bits in the affinity mask
137  KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
138  KMP_ADVANCE_SCAN(scan);
139  if (previous - start > 0) {
140  KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
141  }
142  }
143  KMP_ADVANCE_SCAN(scan);
144  // Start over with new start point
145  start = finish;
146  if (start == mask->end())
147  break;
148  // Check for overflow
149  if (end - scan < 2)
150  break;
151  }
152 
153  // Check for overflow
154  KMP_ASSERT(scan <= end);
155  return buf;
156 }
157 #undef KMP_ADVANCE_SCAN
158 
159 // Print the affinity mask to the string buffer object in a pretty format
160 // The format is a comma separated list of non-negative integers or integer
161 // ranges: e.g., 1,2,3-5,7,9-15
162 // The format can also be the string "{<empty>}" if no bits are set in mask
163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
164  kmp_affin_mask_t *mask) {
165  int start = 0, finish = 0, previous = 0;
166  bool first_range;
167  KMP_ASSERT(buf);
168  KMP_ASSERT(mask);
169 
170  __kmp_str_buf_clear(buf);
171 
172  // Check for empty set.
173  if (mask->begin() == mask->end()) {
174  __kmp_str_buf_print(buf, "%s", "{<empty>}");
175  return buf;
176  }
177 
178  first_range = true;
179  start = mask->begin();
180  while (1) {
181  // Find next range
182  // [start, previous] is inclusive range of contiguous bits in mask
183  for (finish = mask->next(start), previous = start;
184  finish == previous + 1 && finish != mask->end();
185  finish = mask->next(finish)) {
186  previous = finish;
187  }
188 
189  // The first range does not need a comma printed before it, but the rest
190  // of the ranges do need a comma beforehand
191  if (!first_range) {
192  __kmp_str_buf_print(buf, "%s", ",");
193  } else {
194  first_range = false;
195  }
196  // Range with three or more contiguous bits in the affinity mask
197  if (previous - start > 1) {
198  __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
199  static_cast<int>(previous));
200  } else {
201  // Range with one or two contiguous bits in the affinity mask
202  __kmp_str_buf_print(buf, "%d", static_cast<int>(start));
203  if (previous - start > 0) {
204  __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
205  }
206  }
207  // Start over with new start point
208  start = finish;
209  if (start == mask->end())
210  break;
211  }
212  return buf;
213 }
214 
215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
216  KMP_CPU_ZERO(mask);
217 
218 #if KMP_GROUP_AFFINITY
219 
220  if (__kmp_num_proc_groups > 1) {
221  int group;
222  KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
223  for (group = 0; group < __kmp_num_proc_groups; group++) {
224  int i;
225  int num = __kmp_GetActiveProcessorCount(group);
226  for (i = 0; i < num; i++) {
227  KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
228  }
229  }
230  } else
231 
232 #endif /* KMP_GROUP_AFFINITY */
233 
234  {
235  int proc;
236  for (proc = 0; proc < __kmp_xproc; proc++) {
237  KMP_CPU_SET(proc, mask);
238  }
239  }
240 }
241 
242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
243 // called to renumber the labels from [0..n] and place them into the child_num
244 // vector of the address object. This is done in case the labels used for
245 // the children at one node of the hierarchy differ from those used for
246 // another node at the same level. Example: suppose the machine has 2 nodes
247 // with 2 packages each. The first node contains packages 601 and 602, and
248 // second node contains packages 603 and 604. If we try to sort the table
249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
250 // because we are paying attention to the labels themselves, not the ordinal
251 // child numbers. By using the child numbers in the sort, the result is
252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
254  int numAddrs) {
255  KMP_DEBUG_ASSERT(numAddrs > 0);
256  int depth = address2os->first.depth;
257  unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
258  unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
259  int labCt;
260  for (labCt = 0; labCt < depth; labCt++) {
261  address2os[0].first.childNums[labCt] = counts[labCt] = 0;
262  lastLabel[labCt] = address2os[0].first.labels[labCt];
263  }
264  int i;
265  for (i = 1; i < numAddrs; i++) {
266  for (labCt = 0; labCt < depth; labCt++) {
267  if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
268  int labCt2;
269  for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
270  counts[labCt2] = 0;
271  lastLabel[labCt2] = address2os[i].first.labels[labCt2];
272  }
273  counts[labCt]++;
274  lastLabel[labCt] = address2os[i].first.labels[labCt];
275  break;
276  }
277  }
278  for (labCt = 0; labCt < depth; labCt++) {
279  address2os[i].first.childNums[labCt] = counts[labCt];
280  }
281  for (; labCt < (int)Address::maxDepth; labCt++) {
282  address2os[i].first.childNums[labCt] = 0;
283  }
284  }
285  __kmp_free(lastLabel);
286  __kmp_free(counts);
287 }
288 
289 // All of the __kmp_affinity_create_*_map() routines should set
290 // __kmp_affinity_masks to a vector of affinity mask objects of length
291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
292 // the number of levels in the machine topology tree (zero if
293 // __kmp_affinity_type == affinity_none).
294 //
295 // All of the __kmp_affinity_create_*_map() routines should set
296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread.
297 // They need to save and restore the mask, and it could be needed later, so
298 // saving it is just an optimization to avoid calling kmp_get_system_affinity()
299 // again.
300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
301 
302 static int nCoresPerPkg, nPackages;
303 static int __kmp_nThreadsPerCore;
304 #ifndef KMP_DFLT_NTH_CORES
305 static int __kmp_ncores;
306 #endif
307 static int *__kmp_pu_os_idx = NULL;
308 
309 // __kmp_affinity_uniform_topology() doesn't work when called from
310 // places which support arbitrarily many levels in the machine topology
311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
312 // __kmp_affinity_create_x2apicid_map().
313 inline static bool __kmp_affinity_uniform_topology() {
314  return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
315 }
316 
317 // Print out the detailed machine topology map, i.e. the physical locations
318 // of each OS proc.
319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
320  int depth, int pkgLevel,
321  int coreLevel, int threadLevel) {
322  int proc;
323 
324  KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
325  for (proc = 0; proc < len; proc++) {
326  int level;
327  kmp_str_buf_t buf;
328  __kmp_str_buf_init(&buf);
329  for (level = 0; level < depth; level++) {
330  if (level == threadLevel) {
331  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
332  } else if (level == coreLevel) {
333  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
334  } else if (level == pkgLevel) {
335  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
336  } else if (level > pkgLevel) {
337  __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
338  level - pkgLevel - 1);
339  } else {
340  __kmp_str_buf_print(&buf, "L%d ", level);
341  }
342  __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
343  }
344  KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
345  buf.str);
346  __kmp_str_buf_free(&buf);
347  }
348 }
349 
350 #if KMP_USE_HWLOC
351 
352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
353  int depth, int *levels) {
354  int proc;
355  kmp_str_buf_t buf;
356  __kmp_str_buf_init(&buf);
357  KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
358  for (proc = 0; proc < len; proc++) {
359  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
360  addrP[proc].first.labels[0]);
361  if (depth > 1) {
362  int level = 1; // iterate over levels
363  int label = 1; // iterate over labels
364  if (__kmp_numa_detected)
365  // node level follows package
366  if (levels[level++] > 0)
367  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
368  addrP[proc].first.labels[label++]);
369  if (__kmp_tile_depth > 0)
370  // tile level follows node if any, or package
371  if (levels[level++] > 0)
372  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
373  addrP[proc].first.labels[label++]);
374  if (levels[level++] > 0)
375  // core level follows
376  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
377  addrP[proc].first.labels[label++]);
378  if (levels[level++] > 0)
379  // thread level is the latest
380  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
381  addrP[proc].first.labels[label++]);
382  KMP_DEBUG_ASSERT(label == depth);
383  }
384  KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
385  __kmp_str_buf_clear(&buf);
386  }
387  __kmp_str_buf_free(&buf);
388 }
389 
390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
391 
392 // This function removes the topology levels that are radix 1 and don't offer
393 // further information about the topology. The most common example is when you
394 // have one thread context per core, we don't want the extra thread context
395 // level if it offers no unique labels. So they are removed.
396 // return value: the new depth of address2os
397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
398  int depth, int *levels) {
399  int level;
400  int i;
401  int radix1_detected;
402  int new_depth = depth;
403  for (level = depth - 1; level > 0; --level) {
404  // Detect if this level is radix 1
405  radix1_detected = 1;
406  for (i = 1; i < nTh; ++i) {
407  if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
408  // There are differing label values for this level so it stays
409  radix1_detected = 0;
410  break;
411  }
412  }
413  if (!radix1_detected)
414  continue;
415  // Radix 1 was detected
416  --new_depth;
417  levels[level] = -1; // mark level as not present in address2os array
418  if (level == new_depth) {
419  // "turn off" deepest level, just decrement the depth that removes
420  // the level from address2os array
421  for (i = 0; i < nTh; ++i) {
422  addrP[i].first.depth--;
423  }
424  } else {
425  // For other levels, we move labels over and also reduce the depth
426  int j;
427  for (j = level; j < new_depth; ++j) {
428  for (i = 0; i < nTh; ++i) {
429  addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
430  addrP[i].first.depth--;
431  }
432  levels[j + 1] -= 1;
433  }
434  }
435  }
436  return new_depth;
437 }
438 
439 // Returns the number of objects of type 'type' below 'obj' within the topology
440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
442 // object.
443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
444  hwloc_obj_type_t type) {
445  int retval = 0;
446  hwloc_obj_t first;
447  for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
448  obj->logical_index, type, 0);
449  first != NULL &&
450  hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
451  obj;
452  first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
453  first)) {
454  ++retval;
455  }
456  return retval;
457 }
458 
459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
460  hwloc_obj_t o,
461  kmp_hwloc_depth_t depth,
462  hwloc_obj_t *f) {
463  if (o->depth == depth) {
464  if (*f == NULL)
465  *f = o; // output first descendant found
466  return 1;
467  }
468  int sum = 0;
469  for (unsigned i = 0; i < o->arity; i++)
470  sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
471  return sum; // will be 0 if no one found (as PU arity is 0)
472 }
473 
474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
475  hwloc_obj_type_t type,
476  hwloc_obj_t *f) {
477  if (!hwloc_compare_types(o->type, type)) {
478  if (*f == NULL)
479  *f = o; // output first descendant found
480  return 1;
481  }
482  int sum = 0;
483  for (unsigned i = 0; i < o->arity; i++)
484  sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
485  return sum; // will be 0 if no one found (as PU arity is 0)
486 }
487 
488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
489  int &nActiveThreads,
490  int &num_active_cores,
491  hwloc_obj_t obj, int depth,
492  int *labels) {
493  hwloc_obj_t core = NULL;
494  hwloc_topology_t &tp = __kmp_hwloc_topology;
495  int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
496  for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
497  hwloc_obj_t pu = NULL;
498  KMP_DEBUG_ASSERT(core != NULL);
499  int num_active_threads = 0;
500  int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
501  // int NT = core->arity; pu = core->first_child; // faster?
502  for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
503  KMP_DEBUG_ASSERT(pu != NULL);
504  if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
505  continue; // skip inactive (inaccessible) unit
506  Address addr(depth + 2);
507  KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
508  obj->os_index, obj->logical_index, core->os_index,
509  core->logical_index, pu->os_index, pu->logical_index));
510  for (int i = 0; i < depth; ++i)
511  addr.labels[i] = labels[i]; // package, etc.
512  addr.labels[depth] = core_id; // core
513  addr.labels[depth + 1] = pu_id; // pu
514  addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
515  __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
516  nActiveThreads++;
517  ++num_active_threads; // count active threads per core
518  }
519  if (num_active_threads) { // were there any active threads on the core?
520  ++__kmp_ncores; // count total active cores
521  ++num_active_cores; // count active cores per socket
522  if (num_active_threads > __kmp_nThreadsPerCore)
523  __kmp_nThreadsPerCore = num_active_threads; // calc maximum
524  }
525  }
526  return 0;
527 }
528 
529 // Check if NUMA node detected below the package,
530 // and if tile object is detected and return its depth
531 static int __kmp_hwloc_check_numa() {
532  hwloc_topology_t &tp = __kmp_hwloc_topology;
533  hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
534  int depth, l2cache_depth, package_depth;
535 
536  // Get some PU
537  hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
538  if (hT == NULL) // something has gone wrong
539  return 1;
540 
541  // check NUMA node below PACKAGE
542  hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
543  hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
544  KMP_DEBUG_ASSERT(hS != NULL);
545  if (hN != NULL && hN->depth > hS->depth) {
546  __kmp_numa_detected = TRUE; // socket includes node(s)
547  if (__kmp_affinity_gran == affinity_gran_node) {
548  __kmp_affinity_gran = affinity_gran_numa;
549  }
550  }
551 
552  package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE);
553  l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
554  // check tile, get object by depth because of multiple caches possible
555  depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth;
556  hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
557  hC = NULL; // not used, but reset it here just in case
558  if (hL != NULL &&
559  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
560  __kmp_tile_depth = depth; // tile consists of multiple cores
561  return 0;
562 }
563 
564 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
565  kmp_i18n_id_t *const msg_id) {
566  hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
567  *address2os = NULL;
568  *msg_id = kmp_i18n_null;
569 
570  // Save the affinity mask for the current thread.
571  kmp_affin_mask_t *oldMask;
572  KMP_CPU_ALLOC(oldMask);
573  __kmp_get_system_affinity(oldMask, TRUE);
574  __kmp_hwloc_check_numa();
575 
576  if (!KMP_AFFINITY_CAPABLE()) {
577  // Hack to try and infer the machine topology using only the data
578  // available from cpuid on the current thread, and __kmp_xproc.
579  KMP_ASSERT(__kmp_affinity_type == affinity_none);
580 
581  nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
582  hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
583  __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
584  hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
585  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
586  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
587  if (__kmp_affinity_verbose) {
588  KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
589  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
590  if (__kmp_affinity_uniform_topology()) {
591  KMP_INFORM(Uniform, "KMP_AFFINITY");
592  } else {
593  KMP_INFORM(NonUniform, "KMP_AFFINITY");
594  }
595  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
596  __kmp_nThreadsPerCore, __kmp_ncores);
597  }
598  KMP_CPU_FREE(oldMask);
599  return 0;
600  }
601 
602  int depth = 3;
603  int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
604  int labels[3] = {0}; // package [,node] [,tile] - head of lables array
605  if (__kmp_numa_detected)
606  ++depth;
607  if (__kmp_tile_depth)
608  ++depth;
609 
610  // Allocate the data structure to be returned.
611  AddrUnsPair *retval =
612  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
613  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
614  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
615 
616  // When affinity is off, this routine will still be called to set
617  // __kmp_ncores, as well as __kmp_nThreadsPerCore,
618  // nCoresPerPkg, & nPackages. Make sure all these vars are set
619  // correctly, and return if affinity is not enabled.
620 
621  hwloc_obj_t socket, node, tile;
622  int nActiveThreads = 0;
623  int socket_id = 0;
624  // re-calculate globals to count only accessible resources
625  __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
626  nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
627  for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
628  socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
629  socket_id++) {
630  labels[0] = socket_id;
631  if (__kmp_numa_detected) {
632  int NN;
633  int n_active_nodes = 0;
634  node = NULL;
635  NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
636  &node);
637  for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
638  labels[1] = node_id;
639  if (__kmp_tile_depth) {
640  // NUMA + tiles
641  int NT;
642  int n_active_tiles = 0;
643  tile = NULL;
644  NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
645  &tile);
646  for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
647  labels[2] = tl_id;
648  int n_active_cores = 0;
649  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
650  n_active_cores, tile, 3, labels);
651  if (n_active_cores) { // were there any active cores on the socket?
652  ++n_active_tiles; // count active tiles per node
653  if (n_active_cores > nCorePerTile)
654  nCorePerTile = n_active_cores; // calc maximum
655  }
656  }
657  if (n_active_tiles) { // were there any active tiles on the socket?
658  ++n_active_nodes; // count active nodes per package
659  if (n_active_tiles > nTilePerNode)
660  nTilePerNode = n_active_tiles; // calc maximum
661  }
662  } else {
663  // NUMA, no tiles
664  int n_active_cores = 0;
665  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
666  n_active_cores, node, 2, labels);
667  if (n_active_cores) { // were there any active cores on the socket?
668  ++n_active_nodes; // count active nodes per package
669  if (n_active_cores > nCorePerNode)
670  nCorePerNode = n_active_cores; // calc maximum
671  }
672  }
673  }
674  if (n_active_nodes) { // were there any active nodes on the socket?
675  ++nPackages; // count total active packages
676  if (n_active_nodes > nNodePerPkg)
677  nNodePerPkg = n_active_nodes; // calc maximum
678  }
679  } else {
680  if (__kmp_tile_depth) {
681  // no NUMA, tiles
682  int NT;
683  int n_active_tiles = 0;
684  tile = NULL;
685  NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
686  &tile);
687  for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
688  labels[1] = tl_id;
689  int n_active_cores = 0;
690  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
691  n_active_cores, tile, 2, labels);
692  if (n_active_cores) { // were there any active cores on the socket?
693  ++n_active_tiles; // count active tiles per package
694  if (n_active_cores > nCorePerTile)
695  nCorePerTile = n_active_cores; // calc maximum
696  }
697  }
698  if (n_active_tiles) { // were there any active tiles on the socket?
699  ++nPackages; // count total active packages
700  if (n_active_tiles > nTilePerPkg)
701  nTilePerPkg = n_active_tiles; // calc maximum
702  }
703  } else {
704  // no NUMA, no tiles
705  int n_active_cores = 0;
706  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
707  socket, 1, labels);
708  if (n_active_cores) { // were there any active cores on the socket?
709  ++nPackages; // count total active packages
710  if (n_active_cores > nCoresPerPkg)
711  nCoresPerPkg = n_active_cores; // calc maximum
712  }
713  }
714  }
715  }
716 
717  // If there's only one thread context to bind to, return now.
718  KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
719  KMP_ASSERT(nActiveThreads > 0);
720  if (nActiveThreads == 1) {
721  __kmp_ncores = nPackages = 1;
722  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
723  if (__kmp_affinity_verbose) {
724  char buf[KMP_AFFIN_MASK_PRINT_LEN];
725  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
726 
727  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
728  if (__kmp_affinity_respect_mask) {
729  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
730  } else {
731  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
732  }
733  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
734  KMP_INFORM(Uniform, "KMP_AFFINITY");
735  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
736  __kmp_nThreadsPerCore, __kmp_ncores);
737  }
738 
739  if (__kmp_affinity_type == affinity_none) {
740  __kmp_free(retval);
741  KMP_CPU_FREE(oldMask);
742  return 0;
743  }
744 
745  // Form an Address object which only includes the package level.
746  Address addr(1);
747  addr.labels[0] = retval[0].first.labels[0];
748  retval[0].first = addr;
749 
750  if (__kmp_affinity_gran_levels < 0) {
751  __kmp_affinity_gran_levels = 0;
752  }
753 
754  if (__kmp_affinity_verbose) {
755  __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
756  }
757 
758  *address2os = retval;
759  KMP_CPU_FREE(oldMask);
760  return 1;
761  }
762 
763  // Sort the table by physical Id.
764  qsort(retval, nActiveThreads, sizeof(*retval),
765  __kmp_affinity_cmp_Address_labels);
766 
767  // Check to see if the machine topology is uniform
768  int nPUs = nPackages * __kmp_nThreadsPerCore;
769  if (__kmp_numa_detected) {
770  if (__kmp_tile_depth) { // NUMA + tiles
771  nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
772  } else { // NUMA, no tiles
773  nPUs *= (nNodePerPkg * nCorePerNode);
774  }
775  } else {
776  if (__kmp_tile_depth) { // no NUMA, tiles
777  nPUs *= (nTilePerPkg * nCorePerTile);
778  } else { // no NUMA, no tiles
779  nPUs *= nCoresPerPkg;
780  }
781  }
782  unsigned uniform = (nPUs == nActiveThreads);
783 
784  // Print the machine topology summary.
785  if (__kmp_affinity_verbose) {
786  char mask[KMP_AFFIN_MASK_PRINT_LEN];
787  __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
788  if (__kmp_affinity_respect_mask) {
789  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
790  } else {
791  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
792  }
793  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
794  if (uniform) {
795  KMP_INFORM(Uniform, "KMP_AFFINITY");
796  } else {
797  KMP_INFORM(NonUniform, "KMP_AFFINITY");
798  }
799  if (__kmp_numa_detected) {
800  if (__kmp_tile_depth) { // NUMA + tiles
801  KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
802  nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
803  __kmp_ncores);
804  } else { // NUMA, no tiles
805  KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
806  nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
807  nPUs *= (nNodePerPkg * nCorePerNode);
808  }
809  } else {
810  if (__kmp_tile_depth) { // no NUMA, tiles
811  KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
812  nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
813  } else { // no NUMA, no tiles
814  kmp_str_buf_t buf;
815  __kmp_str_buf_init(&buf);
816  __kmp_str_buf_print(&buf, "%d", nPackages);
817  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
818  __kmp_nThreadsPerCore, __kmp_ncores);
819  __kmp_str_buf_free(&buf);
820  }
821  }
822  }
823 
824  if (__kmp_affinity_type == affinity_none) {
825  __kmp_free(retval);
826  KMP_CPU_FREE(oldMask);
827  return 0;
828  }
829 
830  int depth_full = depth; // number of levels before compressing
831  // Find any levels with radiix 1, and remove them from the map
832  // (except for the package level).
833  depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
834  levels);
835  KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
836  if (__kmp_affinity_gran_levels < 0) {
837  // Set the granularity level based on what levels are modeled
838  // in the machine topology map.
839  __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
840  if (__kmp_affinity_gran > affinity_gran_thread) {
841  for (int i = 1; i <= depth_full; ++i) {
842  if (__kmp_affinity_gran <= i) // only count deeper levels
843  break;
844  if (levels[depth_full - i] > 0)
845  __kmp_affinity_gran_levels++;
846  }
847  }
848  if (__kmp_affinity_gran > affinity_gran_package)
849  __kmp_affinity_gran_levels++; // e.g. granularity = group
850  }
851 
852  if (__kmp_affinity_verbose)
853  __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
854 
855  KMP_CPU_FREE(oldMask);
856  *address2os = retval;
857  return depth;
858 }
859 #endif // KMP_USE_HWLOC
860 
861 // If we don't know how to retrieve the machine's processor topology, or
862 // encounter an error in doing so, this routine is called to form a "flat"
863 // mapping of os thread id's <-> processor id's.
864 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
865  kmp_i18n_id_t *const msg_id) {
866  *address2os = NULL;
867  *msg_id = kmp_i18n_null;
868 
869  // Even if __kmp_affinity_type == affinity_none, this routine might still
870  // called to set __kmp_ncores, as well as
871  // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
872  if (!KMP_AFFINITY_CAPABLE()) {
873  KMP_ASSERT(__kmp_affinity_type == affinity_none);
874  __kmp_ncores = nPackages = __kmp_xproc;
875  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
876  if (__kmp_affinity_verbose) {
877  KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
878  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
879  KMP_INFORM(Uniform, "KMP_AFFINITY");
880  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
881  __kmp_nThreadsPerCore, __kmp_ncores);
882  }
883  return 0;
884  }
885 
886  // When affinity is off, this routine will still be called to set
887  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
888  // Make sure all these vars are set correctly, and return now if affinity is
889  // not enabled.
890  __kmp_ncores = nPackages = __kmp_avail_proc;
891  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
892  if (__kmp_affinity_verbose) {
893  char buf[KMP_AFFIN_MASK_PRINT_LEN];
894  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
895  __kmp_affin_fullMask);
896 
897  KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
898  if (__kmp_affinity_respect_mask) {
899  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
900  } else {
901  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
902  }
903  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
904  KMP_INFORM(Uniform, "KMP_AFFINITY");
905  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
906  __kmp_nThreadsPerCore, __kmp_ncores);
907  }
908  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
909  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
910  if (__kmp_affinity_type == affinity_none) {
911  int avail_ct = 0;
912  int i;
913  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
914  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
915  continue;
916  __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
917  }
918  return 0;
919  }
920 
921  // Contruct the data structure to be returned.
922  *address2os =
923  (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
924  int avail_ct = 0;
925  int i;
926  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
927  // Skip this proc if it is not included in the machine model.
928  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
929  continue;
930  }
931  __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
932  Address addr(1);
933  addr.labels[0] = i;
934  (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
935  }
936  if (__kmp_affinity_verbose) {
937  KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
938  }
939 
940  if (__kmp_affinity_gran_levels < 0) {
941  // Only the package level is modeled in the machine topology map,
942  // so the #levels of granularity is either 0 or 1.
943  if (__kmp_affinity_gran > affinity_gran_package) {
944  __kmp_affinity_gran_levels = 1;
945  } else {
946  __kmp_affinity_gran_levels = 0;
947  }
948  }
949  return 1;
950 }
951 
952 #if KMP_GROUP_AFFINITY
953 
954 // If multiple Windows* OS processor groups exist, we can create a 2-level
955 // topology map with the groups at level 0 and the individual procs at level 1.
956 // This facilitates letting the threads float among all procs in a group,
957 // if granularity=group (the default when there are multiple groups).
958 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
959  kmp_i18n_id_t *const msg_id) {
960  *address2os = NULL;
961  *msg_id = kmp_i18n_null;
962 
963  // If we aren't affinity capable, then return now.
964  // The flat mapping will be used.
965  if (!KMP_AFFINITY_CAPABLE()) {
966  // FIXME set *msg_id
967  return -1;
968  }
969 
970  // Contruct the data structure to be returned.
971  *address2os =
972  (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
973  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
974  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
975  int avail_ct = 0;
976  int i;
977  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
978  // Skip this proc if it is not included in the machine model.
979  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
980  continue;
981  }
982  __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
983  Address addr(2);
984  addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
985  addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
986  (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
987 
988  if (__kmp_affinity_verbose) {
989  KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
990  addr.labels[1]);
991  }
992  }
993 
994  if (__kmp_affinity_gran_levels < 0) {
995  if (__kmp_affinity_gran == affinity_gran_group) {
996  __kmp_affinity_gran_levels = 1;
997  } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
998  (__kmp_affinity_gran == affinity_gran_thread)) {
999  __kmp_affinity_gran_levels = 0;
1000  } else {
1001  const char *gran_str = NULL;
1002  if (__kmp_affinity_gran == affinity_gran_core) {
1003  gran_str = "core";
1004  } else if (__kmp_affinity_gran == affinity_gran_package) {
1005  gran_str = "package";
1006  } else if (__kmp_affinity_gran == affinity_gran_node) {
1007  gran_str = "node";
1008  } else {
1009  KMP_ASSERT(0);
1010  }
1011 
1012  // Warning: can't use affinity granularity \"gran\" with group topology
1013  // method, using "thread"
1014  __kmp_affinity_gran_levels = 0;
1015  }
1016  }
1017  return 2;
1018 }
1019 
1020 #endif /* KMP_GROUP_AFFINITY */
1021 
1022 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1023 
1024 static int __kmp_cpuid_mask_width(int count) {
1025  int r = 0;
1026 
1027  while ((1 << r) < count)
1028  ++r;
1029  return r;
1030 }
1031 
1032 class apicThreadInfo {
1033 public:
1034  unsigned osId; // param to __kmp_affinity_bind_thread
1035  unsigned apicId; // from cpuid after binding
1036  unsigned maxCoresPerPkg; // ""
1037  unsigned maxThreadsPerPkg; // ""
1038  unsigned pkgId; // inferred from above values
1039  unsigned coreId; // ""
1040  unsigned threadId; // ""
1041 };
1042 
1043 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1044  const void *b) {
1045  const apicThreadInfo *aa = (const apicThreadInfo *)a;
1046  const apicThreadInfo *bb = (const apicThreadInfo *)b;
1047  if (aa->pkgId < bb->pkgId)
1048  return -1;
1049  if (aa->pkgId > bb->pkgId)
1050  return 1;
1051  if (aa->coreId < bb->coreId)
1052  return -1;
1053  if (aa->coreId > bb->coreId)
1054  return 1;
1055  if (aa->threadId < bb->threadId)
1056  return -1;
1057  if (aa->threadId > bb->threadId)
1058  return 1;
1059  return 0;
1060 }
1061 
1062 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1063 // an algorithm which cycles through the available os threads, setting
1064 // the current thread's affinity mask to that thread, and then retrieves
1065 // the Apic Id for each thread context using the cpuid instruction.
1066 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
1067  kmp_i18n_id_t *const msg_id) {
1068  kmp_cpuid buf;
1069  *address2os = NULL;
1070  *msg_id = kmp_i18n_null;
1071 
1072  // Check if cpuid leaf 4 is supported.
1073  __kmp_x86_cpuid(0, 0, &buf);
1074  if (buf.eax < 4) {
1075  *msg_id = kmp_i18n_str_NoLeaf4Support;
1076  return -1;
1077  }
1078 
1079  // The algorithm used starts by setting the affinity to each available thread
1080  // and retrieving info from the cpuid instruction, so if we are not capable of
1081  // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1082  // need to do something else - use the defaults that we calculated from
1083  // issuing cpuid without binding to each proc.
1084  if (!KMP_AFFINITY_CAPABLE()) {
1085  // Hack to try and infer the machine topology using only the data
1086  // available from cpuid on the current thread, and __kmp_xproc.
1087  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1088 
1089  // Get an upper bound on the number of threads per package using cpuid(1).
1090  // On some OS/chps combinations where HT is supported by the chip but is
1091  // disabled, this value will be 2 on a single core chip. Usually, it will be
1092  // 2 if HT is enabled and 1 if HT is disabled.
1093  __kmp_x86_cpuid(1, 0, &buf);
1094  int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1095  if (maxThreadsPerPkg == 0) {
1096  maxThreadsPerPkg = 1;
1097  }
1098 
1099  // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1100  // value.
1101  //
1102  // The author of cpu_count.cpp treated this only an upper bound on the
1103  // number of cores, but I haven't seen any cases where it was greater than
1104  // the actual number of cores, so we will treat it as exact in this block of
1105  // code.
1106  //
1107  // First, we need to check if cpuid(4) is supported on this chip. To see if
1108  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1109  // greater.
1110  __kmp_x86_cpuid(0, 0, &buf);
1111  if (buf.eax >= 4) {
1112  __kmp_x86_cpuid(4, 0, &buf);
1113  nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1114  } else {
1115  nCoresPerPkg = 1;
1116  }
1117 
1118  // There is no way to reliably tell if HT is enabled without issuing the
1119  // cpuid instruction from every thread, can correlating the cpuid info, so
1120  // if the machine is not affinity capable, we assume that HT is off. We have
1121  // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1122  // does not support HT.
1123  //
1124  // - Older OSes are usually found on machines with older chips, which do not
1125  // support HT.
1126  // - The performance penalty for mistakenly identifying a machine as HT when
1127  // it isn't (which results in blocktime being incorrectly set to 0) is
1128  // greater than the penalty when for mistakenly identifying a machine as
1129  // being 1 thread/core when it is really HT enabled (which results in
1130  // blocktime being incorrectly set to a positive value).
1131  __kmp_ncores = __kmp_xproc;
1132  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1133  __kmp_nThreadsPerCore = 1;
1134  if (__kmp_affinity_verbose) {
1135  KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
1136  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1137  if (__kmp_affinity_uniform_topology()) {
1138  KMP_INFORM(Uniform, "KMP_AFFINITY");
1139  } else {
1140  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1141  }
1142  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1143  __kmp_nThreadsPerCore, __kmp_ncores);
1144  }
1145  return 0;
1146  }
1147 
1148  // From here on, we can assume that it is safe to call
1149  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1150  // __kmp_affinity_type = affinity_none.
1151 
1152  // Save the affinity mask for the current thread.
1153  kmp_affin_mask_t *oldMask;
1154  KMP_CPU_ALLOC(oldMask);
1155  KMP_ASSERT(oldMask != NULL);
1156  __kmp_get_system_affinity(oldMask, TRUE);
1157 
1158  // Run through each of the available contexts, binding the current thread
1159  // to it, and obtaining the pertinent information using the cpuid instr.
1160  //
1161  // The relevant information is:
1162  // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1163  // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1164  // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1165  // of this field determines the width of the core# + thread# fields in the
1166  // Apic Id. It is also an upper bound on the number of threads per
1167  // package, but it has been verified that situations happen were it is not
1168  // exact. In particular, on certain OS/chip combinations where Intel(R)
1169  // Hyper-Threading Technology is supported by the chip but has been
1170  // disabled, the value of this field will be 2 (for a single core chip).
1171  // On other OS/chip combinations supporting Intel(R) Hyper-Threading
1172  // Technology, the value of this field will be 1 when Intel(R)
1173  // Hyper-Threading Technology is disabled and 2 when it is enabled.
1174  // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
1175  // of this field (+1) determines the width of the core# field in the Apic
1176  // Id. The comments in "cpucount.cpp" say that this value is an upper
1177  // bound, but the IA-32 architecture manual says that it is exactly the
1178  // number of cores per package, and I haven't seen any case where it
1179  // wasn't.
1180  //
1181  // From this information, deduce the package Id, core Id, and thread Id,
1182  // and set the corresponding fields in the apicThreadInfo struct.
1183  unsigned i;
1184  apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1185  __kmp_avail_proc * sizeof(apicThreadInfo));
1186  unsigned nApics = 0;
1187  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1188  // Skip this proc if it is not included in the machine model.
1189  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1190  continue;
1191  }
1192  KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1193 
1194  __kmp_affinity_dispatch->bind_thread(i);
1195  threadInfo[nApics].osId = i;
1196 
1197  // The apic id and max threads per pkg come from cpuid(1).
1198  __kmp_x86_cpuid(1, 0, &buf);
1199  if (((buf.edx >> 9) & 1) == 0) {
1200  __kmp_set_system_affinity(oldMask, TRUE);
1201  __kmp_free(threadInfo);
1202  KMP_CPU_FREE(oldMask);
1203  *msg_id = kmp_i18n_str_ApicNotPresent;
1204  return -1;
1205  }
1206  threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1207  threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1208  if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1209  threadInfo[nApics].maxThreadsPerPkg = 1;
1210  }
1211 
1212  // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1213  // value.
1214  //
1215  // First, we need to check if cpuid(4) is supported on this chip. To see if
1216  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1217  // or greater.
1218  __kmp_x86_cpuid(0, 0, &buf);
1219  if (buf.eax >= 4) {
1220  __kmp_x86_cpuid(4, 0, &buf);
1221  threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1222  } else {
1223  threadInfo[nApics].maxCoresPerPkg = 1;
1224  }
1225 
1226  // Infer the pkgId / coreId / threadId using only the info obtained locally.
1227  int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1228  threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1229 
1230  int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1231  int widthT = widthCT - widthC;
1232  if (widthT < 0) {
1233  // I've never seen this one happen, but I suppose it could, if the cpuid
1234  // instruction on a chip was really screwed up. Make sure to restore the
1235  // affinity mask before the tail call.
1236  __kmp_set_system_affinity(oldMask, TRUE);
1237  __kmp_free(threadInfo);
1238  KMP_CPU_FREE(oldMask);
1239  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1240  return -1;
1241  }
1242 
1243  int maskC = (1 << widthC) - 1;
1244  threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1245 
1246  int maskT = (1 << widthT) - 1;
1247  threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1248 
1249  nApics++;
1250  }
1251 
1252  // We've collected all the info we need.
1253  // Restore the old affinity mask for this thread.
1254  __kmp_set_system_affinity(oldMask, TRUE);
1255 
1256  // If there's only one thread context to bind to, form an Address object
1257  // with depth 1 and return immediately (or, if affinity is off, set
1258  // address2os to NULL and return).
1259  //
1260  // If it is configured to omit the package level when there is only a single
1261  // package, the logic at the end of this routine won't work if there is only
1262  // a single thread - it would try to form an Address object with depth 0.
1263  KMP_ASSERT(nApics > 0);
1264  if (nApics == 1) {
1265  __kmp_ncores = nPackages = 1;
1266  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1267  if (__kmp_affinity_verbose) {
1268  char buf[KMP_AFFIN_MASK_PRINT_LEN];
1269  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1270 
1271  KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1272  if (__kmp_affinity_respect_mask) {
1273  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1274  } else {
1275  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1276  }
1277  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1278  KMP_INFORM(Uniform, "KMP_AFFINITY");
1279  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1280  __kmp_nThreadsPerCore, __kmp_ncores);
1281  }
1282 
1283  if (__kmp_affinity_type == affinity_none) {
1284  __kmp_free(threadInfo);
1285  KMP_CPU_FREE(oldMask);
1286  return 0;
1287  }
1288 
1289  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1290  Address addr(1);
1291  addr.labels[0] = threadInfo[0].pkgId;
1292  (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1293 
1294  if (__kmp_affinity_gran_levels < 0) {
1295  __kmp_affinity_gran_levels = 0;
1296  }
1297 
1298  if (__kmp_affinity_verbose) {
1299  __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1300  }
1301 
1302  __kmp_free(threadInfo);
1303  KMP_CPU_FREE(oldMask);
1304  return 1;
1305  }
1306 
1307  // Sort the threadInfo table by physical Id.
1308  qsort(threadInfo, nApics, sizeof(*threadInfo),
1309  __kmp_affinity_cmp_apicThreadInfo_phys_id);
1310 
1311  // The table is now sorted by pkgId / coreId / threadId, but we really don't
1312  // know the radix of any of the fields. pkgId's may be sparsely assigned among
1313  // the chips on a system. Although coreId's are usually assigned
1314  // [0 .. coresPerPkg-1] and threadId's are usually assigned
1315  // [0..threadsPerCore-1], we don't want to make any such assumptions.
1316  //
1317  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1318  // total # packages) are at this point - we want to determine that now. We
1319  // only have an upper bound on the first two figures.
1320  //
1321  // We also perform a consistency check at this point: the values returned by
1322  // the cpuid instruction for any thread bound to a given package had better
1323  // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1324  nPackages = 1;
1325  nCoresPerPkg = 1;
1326  __kmp_nThreadsPerCore = 1;
1327  unsigned nCores = 1;
1328 
1329  unsigned pkgCt = 1; // to determine radii
1330  unsigned lastPkgId = threadInfo[0].pkgId;
1331  unsigned coreCt = 1;
1332  unsigned lastCoreId = threadInfo[0].coreId;
1333  unsigned threadCt = 1;
1334  unsigned lastThreadId = threadInfo[0].threadId;
1335 
1336  // intra-pkg consist checks
1337  unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1338  unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1339 
1340  for (i = 1; i < nApics; i++) {
1341  if (threadInfo[i].pkgId != lastPkgId) {
1342  nCores++;
1343  pkgCt++;
1344  lastPkgId = threadInfo[i].pkgId;
1345  if ((int)coreCt > nCoresPerPkg)
1346  nCoresPerPkg = coreCt;
1347  coreCt = 1;
1348  lastCoreId = threadInfo[i].coreId;
1349  if ((int)threadCt > __kmp_nThreadsPerCore)
1350  __kmp_nThreadsPerCore = threadCt;
1351  threadCt = 1;
1352  lastThreadId = threadInfo[i].threadId;
1353 
1354  // This is a different package, so go on to the next iteration without
1355  // doing any consistency checks. Reset the consistency check vars, though.
1356  prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1357  prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1358  continue;
1359  }
1360 
1361  if (threadInfo[i].coreId != lastCoreId) {
1362  nCores++;
1363  coreCt++;
1364  lastCoreId = threadInfo[i].coreId;
1365  if ((int)threadCt > __kmp_nThreadsPerCore)
1366  __kmp_nThreadsPerCore = threadCt;
1367  threadCt = 1;
1368  lastThreadId = threadInfo[i].threadId;
1369  } else if (threadInfo[i].threadId != lastThreadId) {
1370  threadCt++;
1371  lastThreadId = threadInfo[i].threadId;
1372  } else {
1373  __kmp_free(threadInfo);
1374  KMP_CPU_FREE(oldMask);
1375  *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1376  return -1;
1377  }
1378 
1379  // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1380  // fields agree between all the threads bounds to a given package.
1381  if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1382  (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1383  __kmp_free(threadInfo);
1384  KMP_CPU_FREE(oldMask);
1385  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1386  return -1;
1387  }
1388  }
1389  nPackages = pkgCt;
1390  if ((int)coreCt > nCoresPerPkg)
1391  nCoresPerPkg = coreCt;
1392  if ((int)threadCt > __kmp_nThreadsPerCore)
1393  __kmp_nThreadsPerCore = threadCt;
1394 
1395  // When affinity is off, this routine will still be called to set
1396  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1397  // Make sure all these vars are set correctly, and return now if affinity is
1398  // not enabled.
1399  __kmp_ncores = nCores;
1400  if (__kmp_affinity_verbose) {
1401  char buf[KMP_AFFIN_MASK_PRINT_LEN];
1402  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1403 
1404  KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1405  if (__kmp_affinity_respect_mask) {
1406  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1407  } else {
1408  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1409  }
1410  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1411  if (__kmp_affinity_uniform_topology()) {
1412  KMP_INFORM(Uniform, "KMP_AFFINITY");
1413  } else {
1414  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1415  }
1416  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1417  __kmp_nThreadsPerCore, __kmp_ncores);
1418  }
1419  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1420  KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1421  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1422  for (i = 0; i < nApics; ++i) {
1423  __kmp_pu_os_idx[i] = threadInfo[i].osId;
1424  }
1425  if (__kmp_affinity_type == affinity_none) {
1426  __kmp_free(threadInfo);
1427  KMP_CPU_FREE(oldMask);
1428  return 0;
1429  }
1430 
1431  // Now that we've determined the number of packages, the number of cores per
1432  // package, and the number of threads per core, we can construct the data
1433  // structure that is to be returned.
1434  int pkgLevel = 0;
1435  int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1436  int threadLevel =
1437  (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1438  unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1439 
1440  KMP_ASSERT(depth > 0);
1441  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1442 
1443  for (i = 0; i < nApics; ++i) {
1444  Address addr(depth);
1445  unsigned os = threadInfo[i].osId;
1446  int d = 0;
1447 
1448  if (pkgLevel >= 0) {
1449  addr.labels[d++] = threadInfo[i].pkgId;
1450  }
1451  if (coreLevel >= 0) {
1452  addr.labels[d++] = threadInfo[i].coreId;
1453  }
1454  if (threadLevel >= 0) {
1455  addr.labels[d++] = threadInfo[i].threadId;
1456  }
1457  (*address2os)[i] = AddrUnsPair(addr, os);
1458  }
1459 
1460  if (__kmp_affinity_gran_levels < 0) {
1461  // Set the granularity level based on what levels are modeled in the machine
1462  // topology map.
1463  __kmp_affinity_gran_levels = 0;
1464  if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1465  __kmp_affinity_gran_levels++;
1466  }
1467  if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1468  __kmp_affinity_gran_levels++;
1469  }
1470  if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1471  __kmp_affinity_gran_levels++;
1472  }
1473  }
1474 
1475  if (__kmp_affinity_verbose) {
1476  __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1477  coreLevel, threadLevel);
1478  }
1479 
1480  __kmp_free(threadInfo);
1481  KMP_CPU_FREE(oldMask);
1482  return depth;
1483 }
1484 
1485 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1486 // architectures support a newer interface for specifying the x2APIC Ids,
1487 // based on cpuid leaf 11.
1488 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1489  kmp_i18n_id_t *const msg_id) {
1490  kmp_cpuid buf;
1491  *address2os = NULL;
1492  *msg_id = kmp_i18n_null;
1493 
1494  // Check to see if cpuid leaf 11 is supported.
1495  __kmp_x86_cpuid(0, 0, &buf);
1496  if (buf.eax < 11) {
1497  *msg_id = kmp_i18n_str_NoLeaf11Support;
1498  return -1;
1499  }
1500  __kmp_x86_cpuid(11, 0, &buf);
1501  if (buf.ebx == 0) {
1502  *msg_id = kmp_i18n_str_NoLeaf11Support;
1503  return -1;
1504  }
1505 
1506  // Find the number of levels in the machine topology. While we're at it, get
1507  // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1508  // get more accurate values later by explicitly counting them, but get
1509  // reasonable defaults now, in case we return early.
1510  int level;
1511  int threadLevel = -1;
1512  int coreLevel = -1;
1513  int pkgLevel = -1;
1514  __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1515 
1516  for (level = 0;; level++) {
1517  if (level > 31) {
1518  // FIXME: Hack for DPD200163180
1519  //
1520  // If level is big then something went wrong -> exiting
1521  //
1522  // There could actually be 32 valid levels in the machine topology, but so
1523  // far, the only machine we have seen which does not exit this loop before
1524  // iteration 32 has fubar x2APIC settings.
1525  //
1526  // For now, just reject this case based upon loop trip count.
1527  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1528  return -1;
1529  }
1530  __kmp_x86_cpuid(11, level, &buf);
1531  if (buf.ebx == 0) {
1532  if (pkgLevel < 0) {
1533  // Will infer nPackages from __kmp_xproc
1534  pkgLevel = level;
1535  level++;
1536  }
1537  break;
1538  }
1539  int kind = (buf.ecx >> 8) & 0xff;
1540  if (kind == 1) {
1541  // SMT level
1542  threadLevel = level;
1543  coreLevel = -1;
1544  pkgLevel = -1;
1545  __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1546  if (__kmp_nThreadsPerCore == 0) {
1547  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1548  return -1;
1549  }
1550  } else if (kind == 2) {
1551  // core level
1552  coreLevel = level;
1553  pkgLevel = -1;
1554  nCoresPerPkg = buf.ebx & 0xffff;
1555  if (nCoresPerPkg == 0) {
1556  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1557  return -1;
1558  }
1559  } else {
1560  if (level <= 0) {
1561  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1562  return -1;
1563  }
1564  if (pkgLevel >= 0) {
1565  continue;
1566  }
1567  pkgLevel = level;
1568  nPackages = buf.ebx & 0xffff;
1569  if (nPackages == 0) {
1570  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1571  return -1;
1572  }
1573  }
1574  }
1575  int depth = level;
1576 
1577  // In the above loop, "level" was counted from the finest level (usually
1578  // thread) to the coarsest. The caller expects that we will place the labels
1579  // in (*address2os)[].first.labels[] in the inverse order, so we need to
1580  // invert the vars saying which level means what.
1581  if (threadLevel >= 0) {
1582  threadLevel = depth - threadLevel - 1;
1583  }
1584  if (coreLevel >= 0) {
1585  coreLevel = depth - coreLevel - 1;
1586  }
1587  KMP_DEBUG_ASSERT(pkgLevel >= 0);
1588  pkgLevel = depth - pkgLevel - 1;
1589 
1590  // The algorithm used starts by setting the affinity to each available thread
1591  // and retrieving info from the cpuid instruction, so if we are not capable of
1592  // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1593  // need to do something else - use the defaults that we calculated from
1594  // issuing cpuid without binding to each proc.
1595  if (!KMP_AFFINITY_CAPABLE()) {
1596  // Hack to try and infer the machine topology using only the data
1597  // available from cpuid on the current thread, and __kmp_xproc.
1598  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1599 
1600  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1601  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1602  if (__kmp_affinity_verbose) {
1603  KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1604  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1605  if (__kmp_affinity_uniform_topology()) {
1606  KMP_INFORM(Uniform, "KMP_AFFINITY");
1607  } else {
1608  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1609  }
1610  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1611  __kmp_nThreadsPerCore, __kmp_ncores);
1612  }
1613  return 0;
1614  }
1615 
1616  // From here on, we can assume that it is safe to call
1617  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1618  // __kmp_affinity_type = affinity_none.
1619 
1620  // Save the affinity mask for the current thread.
1621  kmp_affin_mask_t *oldMask;
1622  KMP_CPU_ALLOC(oldMask);
1623  __kmp_get_system_affinity(oldMask, TRUE);
1624 
1625  // Allocate the data structure to be returned.
1626  AddrUnsPair *retval =
1627  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1628 
1629  // Run through each of the available contexts, binding the current thread
1630  // to it, and obtaining the pertinent information using the cpuid instr.
1631  unsigned int proc;
1632  int nApics = 0;
1633  KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1634  // Skip this proc if it is not included in the machine model.
1635  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1636  continue;
1637  }
1638  KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1639 
1640  __kmp_affinity_dispatch->bind_thread(proc);
1641 
1642  // Extract labels for each level in the machine topology map from Apic ID.
1643  Address addr(depth);
1644  int prev_shift = 0;
1645 
1646  for (level = 0; level < depth; level++) {
1647  __kmp_x86_cpuid(11, level, &buf);
1648  unsigned apicId = buf.edx;
1649  if (buf.ebx == 0) {
1650  if (level != depth - 1) {
1651  KMP_CPU_FREE(oldMask);
1652  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1653  return -1;
1654  }
1655  addr.labels[depth - level - 1] = apicId >> prev_shift;
1656  level++;
1657  break;
1658  }
1659  int shift = buf.eax & 0x1f;
1660  int mask = (1 << shift) - 1;
1661  addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1662  prev_shift = shift;
1663  }
1664  if (level != depth) {
1665  KMP_CPU_FREE(oldMask);
1666  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1667  return -1;
1668  }
1669 
1670  retval[nApics] = AddrUnsPair(addr, proc);
1671  nApics++;
1672  }
1673 
1674  // We've collected all the info we need.
1675  // Restore the old affinity mask for this thread.
1676  __kmp_set_system_affinity(oldMask, TRUE);
1677 
1678  // If there's only one thread context to bind to, return now.
1679  KMP_ASSERT(nApics > 0);
1680  if (nApics == 1) {
1681  __kmp_ncores = nPackages = 1;
1682  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1683  if (__kmp_affinity_verbose) {
1684  char buf[KMP_AFFIN_MASK_PRINT_LEN];
1685  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1686 
1687  KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1688  if (__kmp_affinity_respect_mask) {
1689  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1690  } else {
1691  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1692  }
1693  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1694  KMP_INFORM(Uniform, "KMP_AFFINITY");
1695  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1696  __kmp_nThreadsPerCore, __kmp_ncores);
1697  }
1698 
1699  if (__kmp_affinity_type == affinity_none) {
1700  __kmp_free(retval);
1701  KMP_CPU_FREE(oldMask);
1702  return 0;
1703  }
1704 
1705  // Form an Address object which only includes the package level.
1706  Address addr(1);
1707  addr.labels[0] = retval[0].first.labels[pkgLevel];
1708  retval[0].first = addr;
1709 
1710  if (__kmp_affinity_gran_levels < 0) {
1711  __kmp_affinity_gran_levels = 0;
1712  }
1713 
1714  if (__kmp_affinity_verbose) {
1715  __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1716  }
1717 
1718  *address2os = retval;
1719  KMP_CPU_FREE(oldMask);
1720  return 1;
1721  }
1722 
1723  // Sort the table by physical Id.
1724  qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1725 
1726  // Find the radix at each of the levels.
1727  unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1728  unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1729  unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1730  unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1731  for (level = 0; level < depth; level++) {
1732  totals[level] = 1;
1733  maxCt[level] = 1;
1734  counts[level] = 1;
1735  last[level] = retval[0].first.labels[level];
1736  }
1737 
1738  // From here on, the iteration variable "level" runs from the finest level to
1739  // the coarsest, i.e. we iterate forward through
1740  // (*address2os)[].first.labels[] - in the previous loops, we iterated
1741  // backwards.
1742  for (proc = 1; (int)proc < nApics; proc++) {
1743  int level;
1744  for (level = 0; level < depth; level++) {
1745  if (retval[proc].first.labels[level] != last[level]) {
1746  int j;
1747  for (j = level + 1; j < depth; j++) {
1748  totals[j]++;
1749  counts[j] = 1;
1750  // The line below causes printing incorrect topology information in
1751  // case the max value for some level (maxCt[level]) is encountered
1752  // earlier than some less value while going through the array. For
1753  // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1754  // maxCt[1] == 2
1755  // whereas it must be 4.
1756  // TODO!!! Check if it can be commented safely
1757  // maxCt[j] = 1;
1758  last[j] = retval[proc].first.labels[j];
1759  }
1760  totals[level]++;
1761  counts[level]++;
1762  if (counts[level] > maxCt[level]) {
1763  maxCt[level] = counts[level];
1764  }
1765  last[level] = retval[proc].first.labels[level];
1766  break;
1767  } else if (level == depth - 1) {
1768  __kmp_free(last);
1769  __kmp_free(maxCt);
1770  __kmp_free(counts);
1771  __kmp_free(totals);
1772  __kmp_free(retval);
1773  KMP_CPU_FREE(oldMask);
1774  *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1775  return -1;
1776  }
1777  }
1778  }
1779 
1780  // When affinity is off, this routine will still be called to set
1781  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1782  // Make sure all these vars are set correctly, and return if affinity is not
1783  // enabled.
1784  if (threadLevel >= 0) {
1785  __kmp_nThreadsPerCore = maxCt[threadLevel];
1786  } else {
1787  __kmp_nThreadsPerCore = 1;
1788  }
1789  nPackages = totals[pkgLevel];
1790 
1791  if (coreLevel >= 0) {
1792  __kmp_ncores = totals[coreLevel];
1793  nCoresPerPkg = maxCt[coreLevel];
1794  } else {
1795  __kmp_ncores = nPackages;
1796  nCoresPerPkg = 1;
1797  }
1798 
1799  // Check to see if the machine topology is uniform
1800  unsigned prod = maxCt[0];
1801  for (level = 1; level < depth; level++) {
1802  prod *= maxCt[level];
1803  }
1804  bool uniform = (prod == totals[level - 1]);
1805 
1806  // Print the machine topology summary.
1807  if (__kmp_affinity_verbose) {
1808  char mask[KMP_AFFIN_MASK_PRINT_LEN];
1809  __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1810 
1811  KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1812  if (__kmp_affinity_respect_mask) {
1813  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1814  } else {
1815  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1816  }
1817  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1818  if (uniform) {
1819  KMP_INFORM(Uniform, "KMP_AFFINITY");
1820  } else {
1821  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1822  }
1823 
1824  kmp_str_buf_t buf;
1825  __kmp_str_buf_init(&buf);
1826 
1827  __kmp_str_buf_print(&buf, "%d", totals[0]);
1828  for (level = 1; level <= pkgLevel; level++) {
1829  __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1830  }
1831  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1832  __kmp_nThreadsPerCore, __kmp_ncores);
1833 
1834  __kmp_str_buf_free(&buf);
1835  }
1836  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1837  KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1838  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1839  for (proc = 0; (int)proc < nApics; ++proc) {
1840  __kmp_pu_os_idx[proc] = retval[proc].second;
1841  }
1842  if (__kmp_affinity_type == affinity_none) {
1843  __kmp_free(last);
1844  __kmp_free(maxCt);
1845  __kmp_free(counts);
1846  __kmp_free(totals);
1847  __kmp_free(retval);
1848  KMP_CPU_FREE(oldMask);
1849  return 0;
1850  }
1851 
1852  // Find any levels with radiix 1, and remove them from the map
1853  // (except for the package level).
1854  int new_depth = 0;
1855  for (level = 0; level < depth; level++) {
1856  if ((maxCt[level] == 1) && (level != pkgLevel)) {
1857  continue;
1858  }
1859  new_depth++;
1860  }
1861 
1862  // If we are removing any levels, allocate a new vector to return,
1863  // and copy the relevant information to it.
1864  if (new_depth != depth) {
1865  AddrUnsPair *new_retval =
1866  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1867  for (proc = 0; (int)proc < nApics; proc++) {
1868  Address addr(new_depth);
1869  new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1870  }
1871  int new_level = 0;
1872  int newPkgLevel = -1;
1873  int newCoreLevel = -1;
1874  int newThreadLevel = -1;
1875  for (level = 0; level < depth; level++) {
1876  if ((maxCt[level] == 1) && (level != pkgLevel)) {
1877  // Remove this level. Never remove the package level
1878  continue;
1879  }
1880  if (level == pkgLevel) {
1881  newPkgLevel = new_level;
1882  }
1883  if (level == coreLevel) {
1884  newCoreLevel = new_level;
1885  }
1886  if (level == threadLevel) {
1887  newThreadLevel = new_level;
1888  }
1889  for (proc = 0; (int)proc < nApics; proc++) {
1890  new_retval[proc].first.labels[new_level] =
1891  retval[proc].first.labels[level];
1892  }
1893  new_level++;
1894  }
1895 
1896  __kmp_free(retval);
1897  retval = new_retval;
1898  depth = new_depth;
1899  pkgLevel = newPkgLevel;
1900  coreLevel = newCoreLevel;
1901  threadLevel = newThreadLevel;
1902  }
1903 
1904  if (__kmp_affinity_gran_levels < 0) {
1905  // Set the granularity level based on what levels are modeled
1906  // in the machine topology map.
1907  __kmp_affinity_gran_levels = 0;
1908  if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1909  __kmp_affinity_gran_levels++;
1910  }
1911  if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1912  __kmp_affinity_gran_levels++;
1913  }
1914  if (__kmp_affinity_gran > affinity_gran_package) {
1915  __kmp_affinity_gran_levels++;
1916  }
1917  }
1918 
1919  if (__kmp_affinity_verbose) {
1920  __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1921  threadLevel);
1922  }
1923 
1924  __kmp_free(last);
1925  __kmp_free(maxCt);
1926  __kmp_free(counts);
1927  __kmp_free(totals);
1928  KMP_CPU_FREE(oldMask);
1929  *address2os = retval;
1930  return depth;
1931 }
1932 
1933 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1934 
1935 #define osIdIndex 0
1936 #define threadIdIndex 1
1937 #define coreIdIndex 2
1938 #define pkgIdIndex 3
1939 #define nodeIdIndex 4
1940 
1941 typedef unsigned *ProcCpuInfo;
1942 static unsigned maxIndex = pkgIdIndex;
1943 
1944 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1945  const void *b) {
1946  unsigned i;
1947  const unsigned *aa = *(unsigned *const *)a;
1948  const unsigned *bb = *(unsigned *const *)b;
1949  for (i = maxIndex;; i--) {
1950  if (aa[i] < bb[i])
1951  return -1;
1952  if (aa[i] > bb[i])
1953  return 1;
1954  if (i == osIdIndex)
1955  break;
1956  }
1957  return 0;
1958 }
1959 
1960 #if KMP_USE_HIER_SCHED
1961 // Set the array sizes for the hierarchy layers
1962 static void __kmp_dispatch_set_hierarchy_values() {
1963  // Set the maximum number of L1's to number of cores
1964  // Set the maximum number of L2's to to either number of cores / 2 for
1965  // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
1966  // Or the number of cores for Intel(R) Xeon(R) processors
1967  // Set the maximum number of NUMA nodes and L3's to number of packages
1968  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
1969  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1970  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
1971 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS)
1972  if (__kmp_mic_type >= mic3)
1973  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
1974  else
1975 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1976  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
1977  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
1978  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
1979  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
1980  // Set the number of threads per unit
1981  // Number of hardware threads per L1/L2/L3/NUMA/LOOP
1982  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
1983  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
1984  __kmp_nThreadsPerCore;
1985 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS)
1986  if (__kmp_mic_type >= mic3)
1987  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1988  2 * __kmp_nThreadsPerCore;
1989  else
1990 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1991  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1992  __kmp_nThreadsPerCore;
1993  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
1994  nCoresPerPkg * __kmp_nThreadsPerCore;
1995  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
1996  nCoresPerPkg * __kmp_nThreadsPerCore;
1997  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
1998  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1999 }
2000 
2001 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2002 // i.e., this thread's L1 or this thread's L2, etc.
2003 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2004  int index = type + 1;
2005  int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2006  KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2007  if (type == kmp_hier_layer_e::LAYER_THREAD)
2008  return tid;
2009  else if (type == kmp_hier_layer_e::LAYER_LOOP)
2010  return 0;
2011  KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2012  if (tid >= num_hw_threads)
2013  tid = tid % num_hw_threads;
2014  return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2015 }
2016 
2017 // Return the number of t1's per t2
2018 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2019  int i1 = t1 + 1;
2020  int i2 = t2 + 1;
2021  KMP_DEBUG_ASSERT(i1 <= i2);
2022  KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2023  KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2024  KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2025  // (nthreads/t2) / (nthreads/t1) = t1 / t2
2026  return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2027 }
2028 #endif // KMP_USE_HIER_SCHED
2029 
2030 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2031 // affinity map.
2032 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
2033  int *line,
2034  kmp_i18n_id_t *const msg_id,
2035  FILE *f) {
2036  *address2os = NULL;
2037  *msg_id = kmp_i18n_null;
2038 
2039  // Scan of the file, and count the number of "processor" (osId) fields,
2040  // and find the highest value of <n> for a node_<n> field.
2041  char buf[256];
2042  unsigned num_records = 0;
2043  while (!feof(f)) {
2044  buf[sizeof(buf) - 1] = 1;
2045  if (!fgets(buf, sizeof(buf), f)) {
2046  // Read errors presumably because of EOF
2047  break;
2048  }
2049 
2050  char s1[] = "processor";
2051  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2052  num_records++;
2053  continue;
2054  }
2055 
2056  // FIXME - this will match "node_<n> <garbage>"
2057  unsigned level;
2058  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2059  if (nodeIdIndex + level >= maxIndex) {
2060  maxIndex = nodeIdIndex + level;
2061  }
2062  continue;
2063  }
2064  }
2065 
2066  // Check for empty file / no valid processor records, or too many. The number
2067  // of records can't exceed the number of valid bits in the affinity mask.
2068  if (num_records == 0) {
2069  *line = 0;
2070  *msg_id = kmp_i18n_str_NoProcRecords;
2071  return -1;
2072  }
2073  if (num_records > (unsigned)__kmp_xproc) {
2074  *line = 0;
2075  *msg_id = kmp_i18n_str_TooManyProcRecords;
2076  return -1;
2077  }
2078 
2079  // Set the file pointer back to the beginning, so that we can scan the file
2080  // again, this time performing a full parse of the data. Allocate a vector of
2081  // ProcCpuInfo object, where we will place the data. Adding an extra element
2082  // at the end allows us to remove a lot of extra checks for termination
2083  // conditions.
2084  if (fseek(f, 0, SEEK_SET) != 0) {
2085  *line = 0;
2086  *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2087  return -1;
2088  }
2089 
2090  // Allocate the array of records to store the proc info in. The dummy
2091  // element at the end makes the logic in filling them out easier to code.
2092  unsigned **threadInfo =
2093  (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2094  unsigned i;
2095  for (i = 0; i <= num_records; i++) {
2096  threadInfo[i] =
2097  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2098  }
2099 
2100 #define CLEANUP_THREAD_INFO \
2101  for (i = 0; i <= num_records; i++) { \
2102  __kmp_free(threadInfo[i]); \
2103  } \
2104  __kmp_free(threadInfo);
2105 
2106  // A value of UINT_MAX means that we didn't find the field
2107  unsigned __index;
2108 
2109 #define INIT_PROC_INFO(p) \
2110  for (__index = 0; __index <= maxIndex; __index++) { \
2111  (p)[__index] = UINT_MAX; \
2112  }
2113 
2114  for (i = 0; i <= num_records; i++) {
2115  INIT_PROC_INFO(threadInfo[i]);
2116  }
2117 
2118  unsigned num_avail = 0;
2119  *line = 0;
2120  while (!feof(f)) {
2121  // Create an inner scoping level, so that all the goto targets at the end of
2122  // the loop appear in an outer scoping level. This avoids warnings about
2123  // jumping past an initialization to a target in the same block.
2124  {
2125  buf[sizeof(buf) - 1] = 1;
2126  bool long_line = false;
2127  if (!fgets(buf, sizeof(buf), f)) {
2128  // Read errors presumably because of EOF
2129  // If there is valid data in threadInfo[num_avail], then fake
2130  // a blank line in ensure that the last address gets parsed.
2131  bool valid = false;
2132  for (i = 0; i <= maxIndex; i++) {
2133  if (threadInfo[num_avail][i] != UINT_MAX) {
2134  valid = true;
2135  }
2136  }
2137  if (!valid) {
2138  break;
2139  }
2140  buf[0] = 0;
2141  } else if (!buf[sizeof(buf) - 1]) {
2142  // The line is longer than the buffer. Set a flag and don't
2143  // emit an error if we were going to ignore the line, anyway.
2144  long_line = true;
2145 
2146 #define CHECK_LINE \
2147  if (long_line) { \
2148  CLEANUP_THREAD_INFO; \
2149  *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2150  return -1; \
2151  }
2152  }
2153  (*line)++;
2154 
2155  char s1[] = "processor";
2156  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2157  CHECK_LINE;
2158  char *p = strchr(buf + sizeof(s1) - 1, ':');
2159  unsigned val;
2160  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2161  goto no_val;
2162  if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2163 #if KMP_ARCH_AARCH64
2164  // Handle the old AArch64 /proc/cpuinfo layout differently,
2165  // it contains all of the 'processor' entries listed in a
2166  // single 'Processor' section, therefore the normal looking
2167  // for duplicates in that section will always fail.
2168  num_avail++;
2169 #else
2170  goto dup_field;
2171 #endif
2172  threadInfo[num_avail][osIdIndex] = val;
2173 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2174  char path[256];
2175  KMP_SNPRINTF(
2176  path, sizeof(path),
2177  "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2178  threadInfo[num_avail][osIdIndex]);
2179  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2180 
2181  KMP_SNPRINTF(path, sizeof(path),
2182  "/sys/devices/system/cpu/cpu%u/topology/core_id",
2183  threadInfo[num_avail][osIdIndex]);
2184  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2185  continue;
2186 #else
2187  }
2188  char s2[] = "physical id";
2189  if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2190  CHECK_LINE;
2191  char *p = strchr(buf + sizeof(s2) - 1, ':');
2192  unsigned val;
2193  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2194  goto no_val;
2195  if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2196  goto dup_field;
2197  threadInfo[num_avail][pkgIdIndex] = val;
2198  continue;
2199  }
2200  char s3[] = "core id";
2201  if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2202  CHECK_LINE;
2203  char *p = strchr(buf + sizeof(s3) - 1, ':');
2204  unsigned val;
2205  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2206  goto no_val;
2207  if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2208  goto dup_field;
2209  threadInfo[num_avail][coreIdIndex] = val;
2210  continue;
2211 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2212  }
2213  char s4[] = "thread id";
2214  if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2215  CHECK_LINE;
2216  char *p = strchr(buf + sizeof(s4) - 1, ':');
2217  unsigned val;
2218  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2219  goto no_val;
2220  if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2221  goto dup_field;
2222  threadInfo[num_avail][threadIdIndex] = val;
2223  continue;
2224  }
2225  unsigned level;
2226  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2227  CHECK_LINE;
2228  char *p = strchr(buf + sizeof(s4) - 1, ':');
2229  unsigned val;
2230  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2231  goto no_val;
2232  KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2233  if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2234  goto dup_field;
2235  threadInfo[num_avail][nodeIdIndex + level] = val;
2236  continue;
2237  }
2238 
2239  // We didn't recognize the leading token on the line. There are lots of
2240  // leading tokens that we don't recognize - if the line isn't empty, go on
2241  // to the next line.
2242  if ((*buf != 0) && (*buf != '\n')) {
2243  // If the line is longer than the buffer, read characters
2244  // until we find a newline.
2245  if (long_line) {
2246  int ch;
2247  while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2248  ;
2249  }
2250  continue;
2251  }
2252 
2253  // A newline has signalled the end of the processor record.
2254  // Check that there aren't too many procs specified.
2255  if ((int)num_avail == __kmp_xproc) {
2256  CLEANUP_THREAD_INFO;
2257  *msg_id = kmp_i18n_str_TooManyEntries;
2258  return -1;
2259  }
2260 
2261  // Check for missing fields. The osId field must be there, and we
2262  // currently require that the physical id field is specified, also.
2263  if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2264  CLEANUP_THREAD_INFO;
2265  *msg_id = kmp_i18n_str_MissingProcField;
2266  return -1;
2267  }
2268  if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2269  CLEANUP_THREAD_INFO;
2270  *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2271  return -1;
2272  }
2273 
2274  // Skip this proc if it is not included in the machine model.
2275  if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2276  __kmp_affin_fullMask)) {
2277  INIT_PROC_INFO(threadInfo[num_avail]);
2278  continue;
2279  }
2280 
2281  // We have a successful parse of this proc's info.
2282  // Increment the counter, and prepare for the next proc.
2283  num_avail++;
2284  KMP_ASSERT(num_avail <= num_records);
2285  INIT_PROC_INFO(threadInfo[num_avail]);
2286  }
2287  continue;
2288 
2289  no_val:
2290  CLEANUP_THREAD_INFO;
2291  *msg_id = kmp_i18n_str_MissingValCpuinfo;
2292  return -1;
2293 
2294  dup_field:
2295  CLEANUP_THREAD_INFO;
2296  *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2297  return -1;
2298  }
2299  *line = 0;
2300 
2301 #if KMP_MIC && REDUCE_TEAM_SIZE
2302  unsigned teamSize = 0;
2303 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2304 
2305  // check for num_records == __kmp_xproc ???
2306 
2307  // If there's only one thread context to bind to, form an Address object with
2308  // depth 1 and return immediately (or, if affinity is off, set address2os to
2309  // NULL and return).
2310  //
2311  // If it is configured to omit the package level when there is only a single
2312  // package, the logic at the end of this routine won't work if there is only a
2313  // single thread - it would try to form an Address object with depth 0.
2314  KMP_ASSERT(num_avail > 0);
2315  KMP_ASSERT(num_avail <= num_records);
2316  if (num_avail == 1) {
2317  __kmp_ncores = 1;
2318  __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2319  if (__kmp_affinity_verbose) {
2320  if (!KMP_AFFINITY_CAPABLE()) {
2321  KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2322  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2323  KMP_INFORM(Uniform, "KMP_AFFINITY");
2324  } else {
2325  char buf[KMP_AFFIN_MASK_PRINT_LEN];
2326  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2327  __kmp_affin_fullMask);
2328  KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2329  if (__kmp_affinity_respect_mask) {
2330  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2331  } else {
2332  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2333  }
2334  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2335  KMP_INFORM(Uniform, "KMP_AFFINITY");
2336  }
2337  int index;
2338  kmp_str_buf_t buf;
2339  __kmp_str_buf_init(&buf);
2340  __kmp_str_buf_print(&buf, "1");
2341  for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2342  __kmp_str_buf_print(&buf, " x 1");
2343  }
2344  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2345  __kmp_str_buf_free(&buf);
2346  }
2347 
2348  if (__kmp_affinity_type == affinity_none) {
2349  CLEANUP_THREAD_INFO;
2350  return 0;
2351  }
2352 
2353  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2354  Address addr(1);
2355  addr.labels[0] = threadInfo[0][pkgIdIndex];
2356  (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2357 
2358  if (__kmp_affinity_gran_levels < 0) {
2359  __kmp_affinity_gran_levels = 0;
2360  }
2361 
2362  if (__kmp_affinity_verbose) {
2363  __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2364  }
2365 
2366  CLEANUP_THREAD_INFO;
2367  return 1;
2368  }
2369 
2370  // Sort the threadInfo table by physical Id.
2371  qsort(threadInfo, num_avail, sizeof(*threadInfo),
2372  __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2373 
2374  // The table is now sorted by pkgId / coreId / threadId, but we really don't
2375  // know the radix of any of the fields. pkgId's may be sparsely assigned among
2376  // the chips on a system. Although coreId's are usually assigned
2377  // [0 .. coresPerPkg-1] and threadId's are usually assigned
2378  // [0..threadsPerCore-1], we don't want to make any such assumptions.
2379  //
2380  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2381  // total # packages) are at this point - we want to determine that now. We
2382  // only have an upper bound on the first two figures.
2383  unsigned *counts =
2384  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2385  unsigned *maxCt =
2386  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2387  unsigned *totals =
2388  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2389  unsigned *lastId =
2390  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2391 
2392  bool assign_thread_ids = false;
2393  unsigned threadIdCt;
2394  unsigned index;
2395 
2396 restart_radix_check:
2397  threadIdCt = 0;
2398 
2399  // Initialize the counter arrays with data from threadInfo[0].
2400  if (assign_thread_ids) {
2401  if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2402  threadInfo[0][threadIdIndex] = threadIdCt++;
2403  } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2404  threadIdCt = threadInfo[0][threadIdIndex] + 1;
2405  }
2406  }
2407  for (index = 0; index <= maxIndex; index++) {
2408  counts[index] = 1;
2409  maxCt[index] = 1;
2410  totals[index] = 1;
2411  lastId[index] = threadInfo[0][index];
2412  ;
2413  }
2414 
2415  // Run through the rest of the OS procs.
2416  for (i = 1; i < num_avail; i++) {
2417  // Find the most significant index whose id differs from the id for the
2418  // previous OS proc.
2419  for (index = maxIndex; index >= threadIdIndex; index--) {
2420  if (assign_thread_ids && (index == threadIdIndex)) {
2421  // Auto-assign the thread id field if it wasn't specified.
2422  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2423  threadInfo[i][threadIdIndex] = threadIdCt++;
2424  }
2425  // Apparently the thread id field was specified for some entries and not
2426  // others. Start the thread id counter off at the next higher thread id.
2427  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2428  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2429  }
2430  }
2431  if (threadInfo[i][index] != lastId[index]) {
2432  // Run through all indices which are less significant, and reset the
2433  // counts to 1. At all levels up to and including index, we need to
2434  // increment the totals and record the last id.
2435  unsigned index2;
2436  for (index2 = threadIdIndex; index2 < index; index2++) {
2437  totals[index2]++;
2438  if (counts[index2] > maxCt[index2]) {
2439  maxCt[index2] = counts[index2];
2440  }
2441  counts[index2] = 1;
2442  lastId[index2] = threadInfo[i][index2];
2443  }
2444  counts[index]++;
2445  totals[index]++;
2446  lastId[index] = threadInfo[i][index];
2447 
2448  if (assign_thread_ids && (index > threadIdIndex)) {
2449 
2450 #if KMP_MIC && REDUCE_TEAM_SIZE
2451  // The default team size is the total #threads in the machine
2452  // minus 1 thread for every core that has 3 or more threads.
2453  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2454 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2455 
2456  // Restart the thread counter, as we are on a new core.
2457  threadIdCt = 0;
2458 
2459  // Auto-assign the thread id field if it wasn't specified.
2460  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2461  threadInfo[i][threadIdIndex] = threadIdCt++;
2462  }
2463 
2464  // Apparently the thread id field was specified for some entries and
2465  // not others. Start the thread id counter off at the next higher
2466  // thread id.
2467  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2468  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2469  }
2470  }
2471  break;
2472  }
2473  }
2474  if (index < threadIdIndex) {
2475  // If thread ids were specified, it is an error if they are not unique.
2476  // Also, check that we waven't already restarted the loop (to be safe -
2477  // shouldn't need to).
2478  if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2479  __kmp_free(lastId);
2480  __kmp_free(totals);
2481  __kmp_free(maxCt);
2482  __kmp_free(counts);
2483  CLEANUP_THREAD_INFO;
2484  *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2485  return -1;
2486  }
2487 
2488  // If the thread ids were not specified and we see entries entries that
2489  // are duplicates, start the loop over and assign the thread ids manually.
2490  assign_thread_ids = true;
2491  goto restart_radix_check;
2492  }
2493  }
2494 
2495 #if KMP_MIC && REDUCE_TEAM_SIZE
2496  // The default team size is the total #threads in the machine
2497  // minus 1 thread for every core that has 3 or more threads.
2498  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2499 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2500 
2501  for (index = threadIdIndex; index <= maxIndex; index++) {
2502  if (counts[index] > maxCt[index]) {
2503  maxCt[index] = counts[index];
2504  }
2505  }
2506 
2507  __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2508  nCoresPerPkg = maxCt[coreIdIndex];
2509  nPackages = totals[pkgIdIndex];
2510 
2511  // Check to see if the machine topology is uniform
2512  unsigned prod = totals[maxIndex];
2513  for (index = threadIdIndex; index < maxIndex; index++) {
2514  prod *= maxCt[index];
2515  }
2516  bool uniform = (prod == totals[threadIdIndex]);
2517 
2518  // When affinity is off, this routine will still be called to set
2519  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2520  // Make sure all these vars are set correctly, and return now if affinity is
2521  // not enabled.
2522  __kmp_ncores = totals[coreIdIndex];
2523 
2524  if (__kmp_affinity_verbose) {
2525  if (!KMP_AFFINITY_CAPABLE()) {
2526  KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2527  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2528  if (uniform) {
2529  KMP_INFORM(Uniform, "KMP_AFFINITY");
2530  } else {
2531  KMP_INFORM(NonUniform, "KMP_AFFINITY");
2532  }
2533  } else {
2534  char buf[KMP_AFFIN_MASK_PRINT_LEN];
2535  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2536  __kmp_affin_fullMask);
2537  KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2538  if (__kmp_affinity_respect_mask) {
2539  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2540  } else {
2541  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2542  }
2543  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2544  if (uniform) {
2545  KMP_INFORM(Uniform, "KMP_AFFINITY");
2546  } else {
2547  KMP_INFORM(NonUniform, "KMP_AFFINITY");
2548  }
2549  }
2550  kmp_str_buf_t buf;
2551  __kmp_str_buf_init(&buf);
2552 
2553  __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2554  for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2555  __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2556  }
2557  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2558  maxCt[threadIdIndex], __kmp_ncores);
2559 
2560  __kmp_str_buf_free(&buf);
2561  }
2562 
2563 #if KMP_MIC && REDUCE_TEAM_SIZE
2564  // Set the default team size.
2565  if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2566  __kmp_dflt_team_nth = teamSize;
2567  KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2568  "__kmp_dflt_team_nth = %d\n",
2569  __kmp_dflt_team_nth));
2570  }
2571 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2572 
2573  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2574  KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2575  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2576  for (i = 0; i < num_avail; ++i) { // fill the os indices
2577  __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2578  }
2579 
2580  if (__kmp_affinity_type == affinity_none) {
2581  __kmp_free(lastId);
2582  __kmp_free(totals);
2583  __kmp_free(maxCt);
2584  __kmp_free(counts);
2585  CLEANUP_THREAD_INFO;
2586  return 0;
2587  }
2588 
2589  // Count the number of levels which have more nodes at that level than at the
2590  // parent's level (with there being an implicit root node of the top level).
2591  // This is equivalent to saying that there is at least one node at this level
2592  // which has a sibling. These levels are in the map, and the package level is
2593  // always in the map.
2594  bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2595  for (index = threadIdIndex; index < maxIndex; index++) {
2596  KMP_ASSERT(totals[index] >= totals[index + 1]);
2597  inMap[index] = (totals[index] > totals[index + 1]);
2598  }
2599  inMap[maxIndex] = (totals[maxIndex] > 1);
2600  inMap[pkgIdIndex] = true;
2601 
2602  int depth = 0;
2603  for (index = threadIdIndex; index <= maxIndex; index++) {
2604  if (inMap[index]) {
2605  depth++;
2606  }
2607  }
2608  KMP_ASSERT(depth > 0);
2609 
2610  // Construct the data structure that is to be returned.
2611  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2612  int pkgLevel = -1;
2613  int coreLevel = -1;
2614  int threadLevel = -1;
2615 
2616  for (i = 0; i < num_avail; ++i) {
2617  Address addr(depth);
2618  unsigned os = threadInfo[i][osIdIndex];
2619  int src_index;
2620  int dst_index = 0;
2621 
2622  for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2623  if (!inMap[src_index]) {
2624  continue;
2625  }
2626  addr.labels[dst_index] = threadInfo[i][src_index];
2627  if (src_index == pkgIdIndex) {
2628  pkgLevel = dst_index;
2629  } else if (src_index == coreIdIndex) {
2630  coreLevel = dst_index;
2631  } else if (src_index == threadIdIndex) {
2632  threadLevel = dst_index;
2633  }
2634  dst_index++;
2635  }
2636  (*address2os)[i] = AddrUnsPair(addr, os);
2637  }
2638 
2639  if (__kmp_affinity_gran_levels < 0) {
2640  // Set the granularity level based on what levels are modeled
2641  // in the machine topology map.
2642  unsigned src_index;
2643  __kmp_affinity_gran_levels = 0;
2644  for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2645  if (!inMap[src_index]) {
2646  continue;
2647  }
2648  switch (src_index) {
2649  case threadIdIndex:
2650  if (__kmp_affinity_gran > affinity_gran_thread) {
2651  __kmp_affinity_gran_levels++;
2652  }
2653 
2654  break;
2655  case coreIdIndex:
2656  if (__kmp_affinity_gran > affinity_gran_core) {
2657  __kmp_affinity_gran_levels++;
2658  }
2659  break;
2660 
2661  case pkgIdIndex:
2662  if (__kmp_affinity_gran > affinity_gran_package) {
2663  __kmp_affinity_gran_levels++;
2664  }
2665  break;
2666  }
2667  }
2668  }
2669 
2670  if (__kmp_affinity_verbose) {
2671  __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2672  coreLevel, threadLevel);
2673  }
2674 
2675  __kmp_free(inMap);
2676  __kmp_free(lastId);
2677  __kmp_free(totals);
2678  __kmp_free(maxCt);
2679  __kmp_free(counts);
2680  CLEANUP_THREAD_INFO;
2681  return depth;
2682 }
2683 
2684 // Create and return a table of affinity masks, indexed by OS thread ID.
2685 // This routine handles OR'ing together all the affinity masks of threads
2686 // that are sufficiently close, if granularity > fine.
2687 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2688  unsigned *numUnique,
2689  AddrUnsPair *address2os,
2690  unsigned numAddrs) {
2691  // First form a table of affinity masks in order of OS thread id.
2692  unsigned depth;
2693  unsigned maxOsId;
2694  unsigned i;
2695 
2696  KMP_ASSERT(numAddrs > 0);
2697  depth = address2os[0].first.depth;
2698 
2699  maxOsId = 0;
2700  for (i = numAddrs - 1;; --i) {
2701  unsigned osId = address2os[i].second;
2702  if (osId > maxOsId) {
2703  maxOsId = osId;
2704  }
2705  if (i == 0)
2706  break;
2707  }
2708  kmp_affin_mask_t *osId2Mask;
2709  KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2710 
2711  // Sort the address2os table according to physical order. Doing so will put
2712  // all threads on the same core/package/node in consecutive locations.
2713  qsort(address2os, numAddrs, sizeof(*address2os),
2714  __kmp_affinity_cmp_Address_labels);
2715 
2716  KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2717  if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2718  KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2719  }
2720  if (__kmp_affinity_gran_levels >= (int)depth) {
2721  if (__kmp_affinity_verbose ||
2722  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2723  KMP_WARNING(AffThreadsMayMigrate);
2724  }
2725  }
2726 
2727  // Run through the table, forming the masks for all threads on each core.
2728  // Threads on the same core will have identical "Address" objects, not
2729  // considering the last level, which must be the thread id. All threads on a
2730  // core will appear consecutively.
2731  unsigned unique = 0;
2732  unsigned j = 0; // index of 1st thread on core
2733  unsigned leader = 0;
2734  Address *leaderAddr = &(address2os[0].first);
2735  kmp_affin_mask_t *sum;
2736  KMP_CPU_ALLOC_ON_STACK(sum);
2737  KMP_CPU_ZERO(sum);
2738  KMP_CPU_SET(address2os[0].second, sum);
2739  for (i = 1; i < numAddrs; i++) {
2740  // If this thread is sufficiently close to the leader (within the
2741  // granularity setting), then set the bit for this os thread in the
2742  // affinity mask for this group, and go on to the next thread.
2743  if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2744  KMP_CPU_SET(address2os[i].second, sum);
2745  continue;
2746  }
2747 
2748  // For every thread in this group, copy the mask to the thread's entry in
2749  // the osId2Mask table. Mark the first address as a leader.
2750  for (; j < i; j++) {
2751  unsigned osId = address2os[j].second;
2752  KMP_DEBUG_ASSERT(osId <= maxOsId);
2753  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2754  KMP_CPU_COPY(mask, sum);
2755  address2os[j].first.leader = (j == leader);
2756  }
2757  unique++;
2758 
2759  // Start a new mask.
2760  leader = i;
2761  leaderAddr = &(address2os[i].first);
2762  KMP_CPU_ZERO(sum);
2763  KMP_CPU_SET(address2os[i].second, sum);
2764  }
2765 
2766  // For every thread in last group, copy the mask to the thread's
2767  // entry in the osId2Mask table.
2768  for (; j < i; j++) {
2769  unsigned osId = address2os[j].second;
2770  KMP_DEBUG_ASSERT(osId <= maxOsId);
2771  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2772  KMP_CPU_COPY(mask, sum);
2773  address2os[j].first.leader = (j == leader);
2774  }
2775  unique++;
2776  KMP_CPU_FREE_FROM_STACK(sum);
2777 
2778  *maxIndex = maxOsId;
2779  *numUnique = unique;
2780  return osId2Mask;
2781 }
2782 
2783 // Stuff for the affinity proclist parsers. It's easier to declare these vars
2784 // as file-static than to try and pass them through the calling sequence of
2785 // the recursive-descent OMP_PLACES parser.
2786 static kmp_affin_mask_t *newMasks;
2787 static int numNewMasks;
2788 static int nextNewMask;
2789 
2790 #define ADD_MASK(_mask) \
2791  { \
2792  if (nextNewMask >= numNewMasks) { \
2793  int i; \
2794  numNewMasks *= 2; \
2795  kmp_affin_mask_t *temp; \
2796  KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2797  for (i = 0; i < numNewMasks / 2; i++) { \
2798  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
2799  kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
2800  KMP_CPU_COPY(dest, src); \
2801  } \
2802  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
2803  newMasks = temp; \
2804  } \
2805  KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2806  nextNewMask++; \
2807  }
2808 
2809 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
2810  { \
2811  if (((_osId) > _maxOsId) || \
2812  (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2813  if (__kmp_affinity_verbose || \
2814  (__kmp_affinity_warnings && \
2815  (__kmp_affinity_type != affinity_none))) { \
2816  KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2817  } \
2818  } else { \
2819  ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2820  } \
2821  }
2822 
2823 // Re-parse the proclist (for the explicit affinity type), and form the list
2824 // of affinity newMasks indexed by gtid.
2825 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2826  unsigned int *out_numMasks,
2827  const char *proclist,
2828  kmp_affin_mask_t *osId2Mask,
2829  int maxOsId) {
2830  int i;
2831  const char *scan = proclist;
2832  const char *next = proclist;
2833 
2834  // We use malloc() for the temporary mask vector, so that we can use
2835  // realloc() to extend it.
2836  numNewMasks = 2;
2837  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2838  nextNewMask = 0;
2839  kmp_affin_mask_t *sumMask;
2840  KMP_CPU_ALLOC(sumMask);
2841  int setSize = 0;
2842 
2843  for (;;) {
2844  int start, end, stride;
2845 
2846  SKIP_WS(scan);
2847  next = scan;
2848  if (*next == '\0') {
2849  break;
2850  }
2851 
2852  if (*next == '{') {
2853  int num;
2854  setSize = 0;
2855  next++; // skip '{'
2856  SKIP_WS(next);
2857  scan = next;
2858 
2859  // Read the first integer in the set.
2860  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2861  SKIP_DIGITS(next);
2862  num = __kmp_str_to_int(scan, *next);
2863  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2864 
2865  // Copy the mask for that osId to the sum (union) mask.
2866  if ((num > maxOsId) ||
2867  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2868  if (__kmp_affinity_verbose ||
2869  (__kmp_affinity_warnings &&
2870  (__kmp_affinity_type != affinity_none))) {
2871  KMP_WARNING(AffIgnoreInvalidProcID, num);
2872  }
2873  KMP_CPU_ZERO(sumMask);
2874  } else {
2875  KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2876  setSize = 1;
2877  }
2878 
2879  for (;;) {
2880  // Check for end of set.
2881  SKIP_WS(next);
2882  if (*next == '}') {
2883  next++; // skip '}'
2884  break;
2885  }
2886 
2887  // Skip optional comma.
2888  if (*next == ',') {
2889  next++;
2890  }
2891  SKIP_WS(next);
2892 
2893  // Read the next integer in the set.
2894  scan = next;
2895  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2896 
2897  SKIP_DIGITS(next);
2898  num = __kmp_str_to_int(scan, *next);
2899  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2900 
2901  // Add the mask for that osId to the sum mask.
2902  if ((num > maxOsId) ||
2903  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2904  if (__kmp_affinity_verbose ||
2905  (__kmp_affinity_warnings &&
2906  (__kmp_affinity_type != affinity_none))) {
2907  KMP_WARNING(AffIgnoreInvalidProcID, num);
2908  }
2909  } else {
2910  KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2911  setSize++;
2912  }
2913  }
2914  if (setSize > 0) {
2915  ADD_MASK(sumMask);
2916  }
2917 
2918  SKIP_WS(next);
2919  if (*next == ',') {
2920  next++;
2921  }
2922  scan = next;
2923  continue;
2924  }
2925 
2926  // Read the first integer.
2927  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2928  SKIP_DIGITS(next);
2929  start = __kmp_str_to_int(scan, *next);
2930  KMP_ASSERT2(start >= 0, "bad explicit proc list");
2931  SKIP_WS(next);
2932 
2933  // If this isn't a range, then add a mask to the list and go on.
2934  if (*next != '-') {
2935  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2936 
2937  // Skip optional comma.
2938  if (*next == ',') {
2939  next++;
2940  }
2941  scan = next;
2942  continue;
2943  }
2944 
2945  // This is a range. Skip over the '-' and read in the 2nd int.
2946  next++; // skip '-'
2947  SKIP_WS(next);
2948  scan = next;
2949  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2950  SKIP_DIGITS(next);
2951  end = __kmp_str_to_int(scan, *next);
2952  KMP_ASSERT2(end >= 0, "bad explicit proc list");
2953 
2954  // Check for a stride parameter
2955  stride = 1;
2956  SKIP_WS(next);
2957  if (*next == ':') {
2958  // A stride is specified. Skip over the ':" and read the 3rd int.
2959  int sign = +1;
2960  next++; // skip ':'
2961  SKIP_WS(next);
2962  scan = next;
2963  if (*next == '-') {
2964  sign = -1;
2965  next++;
2966  SKIP_WS(next);
2967  scan = next;
2968  }
2969  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2970  SKIP_DIGITS(next);
2971  stride = __kmp_str_to_int(scan, *next);
2972  KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2973  stride *= sign;
2974  }
2975 
2976  // Do some range checks.
2977  KMP_ASSERT2(stride != 0, "bad explicit proc list");
2978  if (stride > 0) {
2979  KMP_ASSERT2(start <= end, "bad explicit proc list");
2980  } else {
2981  KMP_ASSERT2(start >= end, "bad explicit proc list");
2982  }
2983  KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2984 
2985  // Add the mask for each OS proc # to the list.
2986  if (stride > 0) {
2987  do {
2988  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2989  start += stride;
2990  } while (start <= end);
2991  } else {
2992  do {
2993  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2994  start += stride;
2995  } while (start >= end);
2996  }
2997 
2998  // Skip optional comma.
2999  SKIP_WS(next);
3000  if (*next == ',') {
3001  next++;
3002  }
3003  scan = next;
3004  }
3005 
3006  *out_numMasks = nextNewMask;
3007  if (nextNewMask == 0) {
3008  *out_masks = NULL;
3009  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3010  return;
3011  }
3012  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3013  for (i = 0; i < nextNewMask; i++) {
3014  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3015  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3016  KMP_CPU_COPY(dest, src);
3017  }
3018  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3019  KMP_CPU_FREE(sumMask);
3020 }
3021 
3022 /*-----------------------------------------------------------------------------
3023 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3024 places. Again, Here is the grammar:
3025 
3026 place_list := place
3027 place_list := place , place_list
3028 place := num
3029 place := place : num
3030 place := place : num : signed
3031 place := { subplacelist }
3032 place := ! place // (lowest priority)
3033 subplace_list := subplace
3034 subplace_list := subplace , subplace_list
3035 subplace := num
3036 subplace := num : num
3037 subplace := num : num : signed
3038 signed := num
3039 signed := + signed
3040 signed := - signed
3041 -----------------------------------------------------------------------------*/
3042 static void __kmp_process_subplace_list(const char **scan,
3043  kmp_affin_mask_t *osId2Mask,
3044  int maxOsId, kmp_affin_mask_t *tempMask,
3045  int *setSize) {
3046  const char *next;
3047 
3048  for (;;) {
3049  int start, count, stride, i;
3050 
3051  // Read in the starting proc id
3052  SKIP_WS(*scan);
3053  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3054  next = *scan;
3055  SKIP_DIGITS(next);
3056  start = __kmp_str_to_int(*scan, *next);
3057  KMP_ASSERT(start >= 0);
3058  *scan = next;
3059 
3060  // valid follow sets are ',' ':' and '}'
3061  SKIP_WS(*scan);
3062  if (**scan == '}' || **scan == ',') {
3063  if ((start > maxOsId) ||
3064  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3065  if (__kmp_affinity_verbose ||
3066  (__kmp_affinity_warnings &&
3067  (__kmp_affinity_type != affinity_none))) {
3068  KMP_WARNING(AffIgnoreInvalidProcID, start);
3069  }
3070  } else {
3071  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3072  (*setSize)++;
3073  }
3074  if (**scan == '}') {
3075  break;
3076  }
3077  (*scan)++; // skip ','
3078  continue;
3079  }
3080  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3081  (*scan)++; // skip ':'
3082 
3083  // Read count parameter
3084  SKIP_WS(*scan);
3085  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3086  next = *scan;
3087  SKIP_DIGITS(next);
3088  count = __kmp_str_to_int(*scan, *next);
3089  KMP_ASSERT(count >= 0);
3090  *scan = next;
3091 
3092  // valid follow sets are ',' ':' and '}'
3093  SKIP_WS(*scan);
3094  if (**scan == '}' || **scan == ',') {
3095  for (i = 0; i < count; i++) {
3096  if ((start > maxOsId) ||
3097  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3098  if (__kmp_affinity_verbose ||
3099  (__kmp_affinity_warnings &&
3100  (__kmp_affinity_type != affinity_none))) {
3101  KMP_WARNING(AffIgnoreInvalidProcID, start);
3102  }
3103  break; // don't proliferate warnings for large count
3104  } else {
3105  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3106  start++;
3107  (*setSize)++;
3108  }
3109  }
3110  if (**scan == '}') {
3111  break;
3112  }
3113  (*scan)++; // skip ','
3114  continue;
3115  }
3116  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3117  (*scan)++; // skip ':'
3118 
3119  // Read stride parameter
3120  int sign = +1;
3121  for (;;) {
3122  SKIP_WS(*scan);
3123  if (**scan == '+') {
3124  (*scan)++; // skip '+'
3125  continue;
3126  }
3127  if (**scan == '-') {
3128  sign *= -1;
3129  (*scan)++; // skip '-'
3130  continue;
3131  }
3132  break;
3133  }
3134  SKIP_WS(*scan);
3135  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3136  next = *scan;
3137  SKIP_DIGITS(next);
3138  stride = __kmp_str_to_int(*scan, *next);
3139  KMP_ASSERT(stride >= 0);
3140  *scan = next;
3141  stride *= sign;
3142 
3143  // valid follow sets are ',' and '}'
3144  SKIP_WS(*scan);
3145  if (**scan == '}' || **scan == ',') {
3146  for (i = 0; i < count; i++) {
3147  if ((start > maxOsId) ||
3148  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3149  if (__kmp_affinity_verbose ||
3150  (__kmp_affinity_warnings &&
3151  (__kmp_affinity_type != affinity_none))) {
3152  KMP_WARNING(AffIgnoreInvalidProcID, start);
3153  }
3154  break; // don't proliferate warnings for large count
3155  } else {
3156  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3157  start += stride;
3158  (*setSize)++;
3159  }
3160  }
3161  if (**scan == '}') {
3162  break;
3163  }
3164  (*scan)++; // skip ','
3165  continue;
3166  }
3167 
3168  KMP_ASSERT2(0, "bad explicit places list");
3169  }
3170 }
3171 
3172 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3173  int maxOsId, kmp_affin_mask_t *tempMask,
3174  int *setSize) {
3175  const char *next;
3176 
3177  // valid follow sets are '{' '!' and num
3178  SKIP_WS(*scan);
3179  if (**scan == '{') {
3180  (*scan)++; // skip '{'
3181  __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3182  KMP_ASSERT2(**scan == '}', "bad explicit places list");
3183  (*scan)++; // skip '}'
3184  } else if (**scan == '!') {
3185  (*scan)++; // skip '!'
3186  __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3187  KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3188  } else if ((**scan >= '0') && (**scan <= '9')) {
3189  next = *scan;
3190  SKIP_DIGITS(next);
3191  int num = __kmp_str_to_int(*scan, *next);
3192  KMP_ASSERT(num >= 0);
3193  if ((num > maxOsId) ||
3194  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3195  if (__kmp_affinity_verbose ||
3196  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3197  KMP_WARNING(AffIgnoreInvalidProcID, num);
3198  }
3199  } else {
3200  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3201  (*setSize)++;
3202  }
3203  *scan = next; // skip num
3204  } else {
3205  KMP_ASSERT2(0, "bad explicit places list");
3206  }
3207 }
3208 
3209 // static void
3210 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3211  unsigned int *out_numMasks,
3212  const char *placelist,
3213  kmp_affin_mask_t *osId2Mask,
3214  int maxOsId) {
3215  int i, j, count, stride, sign;
3216  const char *scan = placelist;
3217  const char *next = placelist;
3218 
3219  numNewMasks = 2;
3220  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3221  nextNewMask = 0;
3222 
3223  // tempMask is modified based on the previous or initial
3224  // place to form the current place
3225  // previousMask contains the previous place
3226  kmp_affin_mask_t *tempMask;
3227  kmp_affin_mask_t *previousMask;
3228  KMP_CPU_ALLOC(tempMask);
3229  KMP_CPU_ZERO(tempMask);
3230  KMP_CPU_ALLOC(previousMask);
3231  KMP_CPU_ZERO(previousMask);
3232  int setSize = 0;
3233 
3234  for (;;) {
3235  __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3236 
3237  // valid follow sets are ',' ':' and EOL
3238  SKIP_WS(scan);
3239  if (*scan == '\0' || *scan == ',') {
3240  if (setSize > 0) {
3241  ADD_MASK(tempMask);
3242  }
3243  KMP_CPU_ZERO(tempMask);
3244  setSize = 0;
3245  if (*scan == '\0') {
3246  break;
3247  }
3248  scan++; // skip ','
3249  continue;
3250  }
3251 
3252  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3253  scan++; // skip ':'
3254 
3255  // Read count parameter
3256  SKIP_WS(scan);
3257  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3258  next = scan;
3259  SKIP_DIGITS(next);
3260  count = __kmp_str_to_int(scan, *next);
3261  KMP_ASSERT(count >= 0);
3262  scan = next;
3263 
3264  // valid follow sets are ',' ':' and EOL
3265  SKIP_WS(scan);
3266  if (*scan == '\0' || *scan == ',') {
3267  stride = +1;
3268  } else {
3269  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3270  scan++; // skip ':'
3271 
3272  // Read stride parameter
3273  sign = +1;
3274  for (;;) {
3275  SKIP_WS(scan);
3276  if (*scan == '+') {
3277  scan++; // skip '+'
3278  continue;
3279  }
3280  if (*scan == '-') {
3281  sign *= -1;
3282  scan++; // skip '-'
3283  continue;
3284  }
3285  break;
3286  }
3287  SKIP_WS(scan);
3288  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3289  next = scan;
3290  SKIP_DIGITS(next);
3291  stride = __kmp_str_to_int(scan, *next);
3292  KMP_DEBUG_ASSERT(stride >= 0);
3293  scan = next;
3294  stride *= sign;
3295  }
3296 
3297  // Add places determined by initial_place : count : stride
3298  for (i = 0; i < count; i++) {
3299  if (setSize == 0) {
3300  break;
3301  }
3302  // Add the current place, then build the next place (tempMask) from that
3303  KMP_CPU_COPY(previousMask, tempMask);
3304  ADD_MASK(previousMask);
3305  KMP_CPU_ZERO(tempMask);
3306  setSize = 0;
3307  KMP_CPU_SET_ITERATE(j, previousMask) {
3308  if (!KMP_CPU_ISSET(j, previousMask)) {
3309  continue;
3310  }
3311  if ((j + stride > maxOsId) || (j + stride < 0) ||
3312  (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3313  (!KMP_CPU_ISSET(j + stride,
3314  KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3315  if ((__kmp_affinity_verbose ||
3316  (__kmp_affinity_warnings &&
3317  (__kmp_affinity_type != affinity_none))) &&
3318  i < count - 1) {
3319  KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3320  }
3321  continue;
3322  }
3323  KMP_CPU_SET(j + stride, tempMask);
3324  setSize++;
3325  }
3326  }
3327  KMP_CPU_ZERO(tempMask);
3328  setSize = 0;
3329 
3330  // valid follow sets are ',' and EOL
3331  SKIP_WS(scan);
3332  if (*scan == '\0') {
3333  break;
3334  }
3335  if (*scan == ',') {
3336  scan++; // skip ','
3337  continue;
3338  }
3339 
3340  KMP_ASSERT2(0, "bad explicit places list");
3341  }
3342 
3343  *out_numMasks = nextNewMask;
3344  if (nextNewMask == 0) {
3345  *out_masks = NULL;
3346  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3347  return;
3348  }
3349  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3350  KMP_CPU_FREE(tempMask);
3351  KMP_CPU_FREE(previousMask);
3352  for (i = 0; i < nextNewMask; i++) {
3353  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3354  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3355  KMP_CPU_COPY(dest, src);
3356  }
3357  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3358 }
3359 
3360 #undef ADD_MASK
3361 #undef ADD_MASK_OSID
3362 
3363 #if KMP_USE_HWLOC
3364 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3365  // skip PUs descendants of the object o
3366  int skipped = 0;
3367  hwloc_obj_t hT = NULL;
3368  int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3369  for (int i = 0; i < N; ++i) {
3370  KMP_DEBUG_ASSERT(hT);
3371  unsigned idx = hT->os_index;
3372  if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3373  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3374  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3375  ++skipped;
3376  }
3377  hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3378  }
3379  return skipped; // count number of skipped units
3380 }
3381 
3382 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3383  // check if obj has PUs present in fullMask
3384  hwloc_obj_t hT = NULL;
3385  int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3386  for (int i = 0; i < N; ++i) {
3387  KMP_DEBUG_ASSERT(hT);
3388  unsigned idx = hT->os_index;
3389  if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3390  return 1; // found PU
3391  hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3392  }
3393  return 0; // no PUs found
3394 }
3395 #endif // KMP_USE_HWLOC
3396 
3397 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3398  AddrUnsPair *newAddr;
3399  if (__kmp_hws_requested == 0)
3400  goto _exit; // no topology limiting actions requested, exit
3401 #if KMP_USE_HWLOC
3402  if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3403  // Number of subobjects calculated dynamically, this works fine for
3404  // any non-uniform topology.
3405  // L2 cache objects are determined by depth, other objects - by type.
3406  hwloc_topology_t tp = __kmp_hwloc_topology;
3407  int nS = 0, nN = 0, nL = 0, nC = 0,
3408  nT = 0; // logical index including skipped
3409  int nCr = 0, nTr = 0; // number of requested units
3410  int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
3411  hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3412  int L2depth, idx;
3413 
3414  // check support of extensions ----------------------------------
3415  int numa_support = 0, tile_support = 0;
3416  if (__kmp_pu_os_idx)
3417  hT = hwloc_get_pu_obj_by_os_index(tp,
3418  __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3419  else
3420  hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3421  if (hT == NULL) { // something's gone wrong
3422  KMP_WARNING(AffHWSubsetUnsupported);
3423  goto _exit;
3424  }
3425  // check NUMA node
3426  hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3427  hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3428  if (hN != NULL && hN->depth > hS->depth) {
3429  numa_support = 1; // 1 in case socket includes node(s)
3430  } else if (__kmp_hws_node.num > 0) {
3431  // don't support sockets inside NUMA node (no such HW found for testing)
3432  KMP_WARNING(AffHWSubsetUnsupported);
3433  goto _exit;
3434  }
3435  // check L2 cahce, get object by depth because of multiple caches
3436  L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3437  hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3438  if (hL != NULL &&
3439  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
3440  tile_support = 1; // no sense to count L2 if it includes single core
3441  } else if (__kmp_hws_tile.num > 0) {
3442  if (__kmp_hws_core.num == 0) {
3443  __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3444  __kmp_hws_tile.num = 0;
3445  } else {
3446  // L2 and core are both requested, but represent same object
3447  KMP_WARNING(AffHWSubsetInvalid);
3448  goto _exit;
3449  }
3450  }
3451  // end of check of extensions -----------------------------------
3452 
3453  // fill in unset items, validate settings -----------------------
3454  if (__kmp_hws_socket.num == 0)
3455  __kmp_hws_socket.num = nPackages; // use all available sockets
3456  if (__kmp_hws_socket.offset >= nPackages) {
3457  KMP_WARNING(AffHWSubsetManySockets);
3458  goto _exit;
3459  }
3460  if (numa_support) {
3461  hN = NULL;
3462  int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3463  &hN); // num nodes in socket
3464  if (__kmp_hws_node.num == 0)
3465  __kmp_hws_node.num = NN; // use all available nodes
3466  if (__kmp_hws_node.offset >= NN) {
3467  KMP_WARNING(AffHWSubsetManyNodes);
3468  goto _exit;
3469  }
3470  if (tile_support) {
3471  // get num tiles in node
3472  int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3473  if (__kmp_hws_tile.num == 0) {
3474  __kmp_hws_tile.num = NL + 1;
3475  } // use all available tiles, some node may have more tiles, thus +1
3476  if (__kmp_hws_tile.offset >= NL) {
3477  KMP_WARNING(AffHWSubsetManyTiles);
3478  goto _exit;
3479  }
3480  int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3481  &hC); // num cores in tile
3482  if (__kmp_hws_core.num == 0)
3483  __kmp_hws_core.num = NC; // use all available cores
3484  if (__kmp_hws_core.offset >= NC) {
3485  KMP_WARNING(AffHWSubsetManyCores);
3486  goto _exit;
3487  }
3488  } else { // tile_support
3489  int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3490  &hC); // num cores in node
3491  if (__kmp_hws_core.num == 0)
3492  __kmp_hws_core.num = NC; // use all available cores
3493  if (__kmp_hws_core.offset >= NC) {
3494  KMP_WARNING(AffHWSubsetManyCores);
3495  goto _exit;
3496  }
3497  } // tile_support
3498  } else { // numa_support
3499  if (tile_support) {
3500  // get num tiles in socket
3501  int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3502  if (__kmp_hws_tile.num == 0)
3503  __kmp_hws_tile.num = NL; // use all available tiles
3504  if (__kmp_hws_tile.offset >= NL) {
3505  KMP_WARNING(AffHWSubsetManyTiles);
3506  goto _exit;
3507  }
3508  int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3509  &hC); // num cores in tile
3510  if (__kmp_hws_core.num == 0)
3511  __kmp_hws_core.num = NC; // use all available cores
3512  if (__kmp_hws_core.offset >= NC) {
3513  KMP_WARNING(AffHWSubsetManyCores);
3514  goto _exit;
3515  }
3516  } else { // tile_support
3517  int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3518  &hC); // num cores in socket
3519  if (__kmp_hws_core.num == 0)
3520  __kmp_hws_core.num = NC; // use all available cores
3521  if (__kmp_hws_core.offset >= NC) {
3522  KMP_WARNING(AffHWSubsetManyCores);
3523  goto _exit;
3524  }
3525  } // tile_support
3526  }
3527  if (__kmp_hws_proc.num == 0)
3528  __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3529  if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3530  KMP_WARNING(AffHWSubsetManyProcs);
3531  goto _exit;
3532  }
3533  // end of validation --------------------------------------------
3534 
3535  if (pAddr) // pAddr is NULL in case of affinity_none
3536  newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3537  __kmp_avail_proc); // max size
3538  // main loop to form HW subset ----------------------------------
3539  hS = NULL;
3540  int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3541  for (int s = 0; s < NP; ++s) {
3542  // Check Socket -----------------------------------------------
3543  hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3544  if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3545  continue; // skip socket if all PUs are out of fullMask
3546  ++nS; // only count objects those have PUs in affinity mask
3547  if (nS <= __kmp_hws_socket.offset ||
3548  nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3549  n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3550  continue; // move to next socket
3551  }
3552  nCr = 0; // count number of cores per socket
3553  // socket requested, go down the topology tree
3554  // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
3555  if (numa_support) {
3556  nN = 0;
3557  hN = NULL;
3558  // num nodes in current socket
3559  int NN =
3560  __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
3561  for (int n = 0; n < NN; ++n) {
3562  // Check NUMA Node ----------------------------------------
3563  if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
3564  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3565  continue; // skip node if all PUs are out of fullMask
3566  }
3567  ++nN;
3568  if (nN <= __kmp_hws_node.offset ||
3569  nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3570  // skip node as not requested
3571  n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3572  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3573  continue; // move to next node
3574  }
3575  // node requested, go down the topology tree
3576  if (tile_support) {
3577  nL = 0;
3578  hL = NULL;
3579  int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3580  for (int l = 0; l < NL; ++l) {
3581  // Check L2 (tile) ------------------------------------
3582  if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3583  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3584  continue; // skip tile if all PUs are out of fullMask
3585  }
3586  ++nL;
3587  if (nL <= __kmp_hws_tile.offset ||
3588  nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3589  // skip tile as not requested
3590  n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3591  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3592  continue; // move to next tile
3593  }
3594  // tile requested, go down the topology tree
3595  nC = 0;
3596  hC = NULL;
3597  // num cores in current tile
3598  int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3599  HWLOC_OBJ_CORE, &hC);
3600  for (int c = 0; c < NC; ++c) {
3601  // Check Core ---------------------------------------
3602  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3603  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3604  continue; // skip core if all PUs are out of fullMask
3605  }
3606  ++nC;
3607  if (nC <= __kmp_hws_core.offset ||
3608  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3609  // skip node as not requested
3610  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3611  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3612  continue; // move to next node
3613  }
3614  // core requested, go down to PUs
3615  nT = 0;
3616  nTr = 0;
3617  hT = NULL;
3618  // num procs in current core
3619  int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3620  HWLOC_OBJ_PU, &hT);
3621  for (int t = 0; t < NT; ++t) {
3622  // Check PU ---------------------------------------
3623  idx = hT->os_index;
3624  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3625  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3626  continue; // skip PU if not in fullMask
3627  }
3628  ++nT;
3629  if (nT <= __kmp_hws_proc.offset ||
3630  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3631  // skip PU
3632  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3633  ++n_old;
3634  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3635  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3636  continue; // move to next node
3637  }
3638  ++nTr;
3639  if (pAddr) // collect requested thread's data
3640  newAddr[n_new] = (*pAddr)[n_old];
3641  ++n_new;
3642  ++n_old;
3643  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3644  } // threads loop
3645  if (nTr > 0) {
3646  ++nCr; // num cores per socket
3647  ++nCo; // total num cores
3648  if (nTr > nTpC)
3649  nTpC = nTr; // calc max threads per core
3650  }
3651  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3652  } // cores loop
3653  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3654  } // tiles loop
3655  } else { // tile_support
3656  // no tiles, check cores
3657  nC = 0;
3658  hC = NULL;
3659  // num cores in current node
3660  int NC =
3661  __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
3662  for (int c = 0; c < NC; ++c) {
3663  // Check Core ---------------------------------------
3664  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3665  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3666  continue; // skip core if all PUs are out of fullMask
3667  }
3668  ++nC;
3669  if (nC <= __kmp_hws_core.offset ||
3670  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3671  // skip node as not requested
3672  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3673  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3674  continue; // move to next node
3675  }
3676  // core requested, go down to PUs
3677  nT = 0;
3678  nTr = 0;
3679  hT = NULL;
3680  int NT =
3681  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3682  for (int t = 0; t < NT; ++t) {
3683  // Check PU ---------------------------------------
3684  idx = hT->os_index;
3685  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3686  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3687  continue; // skip PU if not in fullMask
3688  }
3689  ++nT;
3690  if (nT <= __kmp_hws_proc.offset ||
3691  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3692  // skip PU
3693  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3694  ++n_old;
3695  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3696  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3697  continue; // move to next node
3698  }
3699  ++nTr;
3700  if (pAddr) // collect requested thread's data
3701  newAddr[n_new] = (*pAddr)[n_old];
3702  ++n_new;
3703  ++n_old;
3704  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3705  } // threads loop
3706  if (nTr > 0) {
3707  ++nCr; // num cores per socket
3708  ++nCo; // total num cores
3709  if (nTr > nTpC)
3710  nTpC = nTr; // calc max threads per core
3711  }
3712  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3713  } // cores loop
3714  } // tiles support
3715  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3716  } // nodes loop
3717  } else { // numa_support
3718  // no NUMA support
3719  if (tile_support) {
3720  nL = 0;
3721  hL = NULL;
3722  // num tiles in current socket
3723  int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3724  for (int l = 0; l < NL; ++l) {
3725  // Check L2 (tile) ------------------------------------
3726  if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3727  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3728  continue; // skip tile if all PUs are out of fullMask
3729  }
3730  ++nL;
3731  if (nL <= __kmp_hws_tile.offset ||
3732  nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3733  // skip tile as not requested
3734  n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3735  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3736  continue; // move to next tile
3737  }
3738  // tile requested, go down the topology tree
3739  nC = 0;
3740  hC = NULL;
3741  // num cores per tile
3742  int NC =
3743  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
3744  for (int c = 0; c < NC; ++c) {
3745  // Check Core ---------------------------------------
3746  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3747  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3748  continue; // skip core if all PUs are out of fullMask
3749  }
3750  ++nC;
3751  if (nC <= __kmp_hws_core.offset ||
3752  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3753  // skip node as not requested
3754  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3755  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3756  continue; // move to next node
3757  }
3758  // core requested, go down to PUs
3759  nT = 0;
3760  nTr = 0;
3761  hT = NULL;
3762  // num procs per core
3763  int NT =
3764  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3765  for (int t = 0; t < NT; ++t) {
3766  // Check PU ---------------------------------------
3767  idx = hT->os_index;
3768  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3769  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3770  continue; // skip PU if not in fullMask
3771  }
3772  ++nT;
3773  if (nT <= __kmp_hws_proc.offset ||
3774  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3775  // skip PU
3776  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3777  ++n_old;
3778  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3779  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3780  continue; // move to next node
3781  }
3782  ++nTr;
3783  if (pAddr) // collect requested thread's data
3784  newAddr[n_new] = (*pAddr)[n_old];
3785  ++n_new;
3786  ++n_old;
3787  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3788  } // threads loop
3789  if (nTr > 0) {
3790  ++nCr; // num cores per socket
3791  ++nCo; // total num cores
3792  if (nTr > nTpC)
3793  nTpC = nTr; // calc max threads per core
3794  }
3795  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3796  } // cores loop
3797  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3798  } // tiles loop
3799  } else { // tile_support
3800  // no tiles, check cores
3801  nC = 0;
3802  hC = NULL;
3803  // num cores in socket
3804  int NC =
3805  __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
3806  for (int c = 0; c < NC; ++c) {
3807  // Check Core -------------------------------------------
3808  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3809  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3810  continue; // skip core if all PUs are out of fullMask
3811  }
3812  ++nC;
3813  if (nC <= __kmp_hws_core.offset ||
3814  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3815  // skip node as not requested
3816  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3817  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3818  continue; // move to next node
3819  }
3820  // core requested, go down to PUs
3821  nT = 0;
3822  nTr = 0;
3823  hT = NULL;
3824  // num procs per core
3825  int NT =
3826  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3827  for (int t = 0; t < NT; ++t) {
3828  // Check PU ---------------------------------------
3829  idx = hT->os_index;
3830  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3831  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3832  continue; // skip PU if not in fullMask
3833  }
3834  ++nT;
3835  if (nT <= __kmp_hws_proc.offset ||
3836  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3837  // skip PU
3838  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3839  ++n_old;
3840  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3841  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3842  continue; // move to next node
3843  }
3844  ++nTr;
3845  if (pAddr) // collect requested thread's data
3846  newAddr[n_new] = (*pAddr)[n_old];
3847  ++n_new;
3848  ++n_old;
3849  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3850  } // threads loop
3851  if (nTr > 0) {
3852  ++nCr; // num cores per socket
3853  ++nCo; // total num cores
3854  if (nTr > nTpC)
3855  nTpC = nTr; // calc max threads per core
3856  }
3857  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3858  } // cores loop
3859  } // tiles support
3860  } // numa_support
3861  if (nCr > 0) { // found cores?
3862  ++nPkg; // num sockets
3863  if (nCr > nCpP)
3864  nCpP = nCr; // calc max cores per socket
3865  }
3866  } // sockets loop
3867 
3868  // check the subset is valid
3869  KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3870  KMP_DEBUG_ASSERT(nPkg > 0);
3871  KMP_DEBUG_ASSERT(nCpP > 0);
3872  KMP_DEBUG_ASSERT(nTpC > 0);
3873  KMP_DEBUG_ASSERT(nCo > 0);
3874  KMP_DEBUG_ASSERT(nPkg <= nPackages);
3875  KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3876  KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3877  KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3878 
3879  nPackages = nPkg; // correct num sockets
3880  nCoresPerPkg = nCpP; // correct num cores per socket
3881  __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3882  __kmp_avail_proc = n_new; // correct num procs
3883  __kmp_ncores = nCo; // correct num cores
3884  // hwloc topology method end
3885  } else
3886 #endif // KMP_USE_HWLOC
3887  {
3888  int n_old = 0, n_new = 0, proc_num = 0;
3889  if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3890  KMP_WARNING(AffHWSubsetNoHWLOC);
3891  goto _exit;
3892  }
3893  if (__kmp_hws_socket.num == 0)
3894  __kmp_hws_socket.num = nPackages; // use all available sockets
3895  if (__kmp_hws_core.num == 0)
3896  __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3897  if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3898  __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3899  if (!__kmp_affinity_uniform_topology()) {
3900  KMP_WARNING(AffHWSubsetNonUniform);
3901  goto _exit; // don't support non-uniform topology
3902  }
3903  if (depth > 3) {
3904  KMP_WARNING(AffHWSubsetNonThreeLevel);
3905  goto _exit; // don't support not-3-level topology
3906  }
3907  if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3908  KMP_WARNING(AffHWSubsetManySockets);
3909  goto _exit;
3910  }
3911  if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
3912  KMP_WARNING(AffHWSubsetManyCores);
3913  goto _exit;
3914  }
3915  // Form the requested subset
3916  if (pAddr) // pAddr is NULL in case of affinity_none
3917  newAddr = (AddrUnsPair *)__kmp_allocate(
3918  sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
3919  __kmp_hws_proc.num);
3920  for (int i = 0; i < nPackages; ++i) {
3921  if (i < __kmp_hws_socket.offset ||
3922  i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3923  // skip not-requested socket
3924  n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3925  if (__kmp_pu_os_idx != NULL) {
3926  // walk through skipped socket
3927  for (int j = 0; j < nCoresPerPkg; ++j) {
3928  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3929  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3930  ++proc_num;
3931  }
3932  }
3933  }
3934  } else {
3935  // walk through requested socket
3936  for (int j = 0; j < nCoresPerPkg; ++j) {
3937  if (j < __kmp_hws_core.offset ||
3938  j >= __kmp_hws_core.offset +
3939  __kmp_hws_core.num) { // skip not-requested core
3940  n_old += __kmp_nThreadsPerCore;
3941  if (__kmp_pu_os_idx != NULL) {
3942  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3943  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3944  ++proc_num;
3945  }
3946  }
3947  } else {
3948  // walk through requested core
3949  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3950  if (k < __kmp_hws_proc.num) {
3951  if (pAddr) // collect requested thread's data
3952  newAddr[n_new] = (*pAddr)[n_old];
3953  n_new++;
3954  } else {
3955  if (__kmp_pu_os_idx != NULL)
3956  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3957  }
3958  n_old++;
3959  ++proc_num;
3960  }
3961  }
3962  }
3963  }
3964  }
3965  KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3966  KMP_DEBUG_ASSERT(n_new ==
3967  __kmp_hws_socket.num * __kmp_hws_core.num *
3968  __kmp_hws_proc.num);
3969  nPackages = __kmp_hws_socket.num; // correct nPackages
3970  nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3971  __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3972  __kmp_avail_proc = n_new; // correct avail_proc
3973  __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3974  } // non-hwloc topology method
3975  if (pAddr) {
3976  __kmp_free(*pAddr);
3977  *pAddr = newAddr; // replace old topology with new one
3978  }
3979  if (__kmp_affinity_verbose) {
3980  char m[KMP_AFFIN_MASK_PRINT_LEN];
3981  __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
3982  __kmp_affin_fullMask);
3983  if (__kmp_affinity_respect_mask) {
3984  KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
3985  } else {
3986  KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
3987  }
3988  KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3989  kmp_str_buf_t buf;
3990  __kmp_str_buf_init(&buf);
3991  __kmp_str_buf_print(&buf, "%d", nPackages);
3992  KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3993  __kmp_nThreadsPerCore, __kmp_ncores);
3994  __kmp_str_buf_free(&buf);
3995  }
3996 _exit:
3997  if (__kmp_pu_os_idx != NULL) {
3998  __kmp_free(__kmp_pu_os_idx);
3999  __kmp_pu_os_idx = NULL;
4000  }
4001 }
4002 
4003 // This function figures out the deepest level at which there is at least one
4004 // cluster/core with more than one processing unit bound to it.
4005 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
4006  int nprocs, int bottom_level) {
4007  int core_level = 0;
4008 
4009  for (int i = 0; i < nprocs; i++) {
4010  for (int j = bottom_level; j > 0; j--) {
4011  if (address2os[i].first.labels[j] > 0) {
4012  if (core_level < (j - 1)) {
4013  core_level = j - 1;
4014  }
4015  }
4016  }
4017  }
4018  return core_level;
4019 }
4020 
4021 // This function counts number of clusters/cores at given level.
4022 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
4023  int nprocs, int bottom_level,
4024  int core_level) {
4025  int ncores = 0;
4026  int i, j;
4027 
4028  j = bottom_level;
4029  for (i = 0; i < nprocs; i++) {
4030  for (j = bottom_level; j > core_level; j--) {
4031  if ((i + 1) < nprocs) {
4032  if (address2os[i + 1].first.labels[j] > 0) {
4033  break;
4034  }
4035  }
4036  }
4037  if (j == core_level) {
4038  ncores++;
4039  }
4040  }
4041  if (j > core_level) {
4042  // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
4043  // core. May occur when called from __kmp_affinity_find_core().
4044  ncores++;
4045  }
4046  return ncores;
4047 }
4048 
4049 // This function finds to which cluster/core given processing unit is bound.
4050 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
4051  int bottom_level, int core_level) {
4052  return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
4053  core_level) -
4054  1;
4055 }
4056 
4057 // This function finds maximal number of processing units bound to a
4058 // cluster/core at given level.
4059 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
4060  int nprocs, int bottom_level,
4061  int core_level) {
4062  int maxprocpercore = 0;
4063 
4064  if (core_level < bottom_level) {
4065  for (int i = 0; i < nprocs; i++) {
4066  int percore = address2os[i].first.labels[core_level + 1] + 1;
4067 
4068  if (percore > maxprocpercore) {
4069  maxprocpercore = percore;
4070  }
4071  }
4072  } else {
4073  maxprocpercore = 1;
4074  }
4075  return maxprocpercore;
4076 }
4077 
4078 static AddrUnsPair *address2os = NULL;
4079 static int *procarr = NULL;
4080 static int __kmp_aff_depth = 0;
4081 
4082 #if KMP_USE_HIER_SCHED
4083 #define KMP_EXIT_AFF_NONE \
4084  KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4085  KMP_ASSERT(address2os == NULL); \
4086  __kmp_apply_thread_places(NULL, 0); \
4087  __kmp_create_affinity_none_places(); \
4088  __kmp_dispatch_set_hierarchy_values(); \
4089  return;
4090 #else
4091 #define KMP_EXIT_AFF_NONE \
4092  KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4093  KMP_ASSERT(address2os == NULL); \
4094  __kmp_apply_thread_places(NULL, 0); \
4095  __kmp_create_affinity_none_places(); \
4096  return;
4097 #endif
4098 
4099 // Create a one element mask array (set of places) which only contains the
4100 // initial process's affinity mask
4101 static void __kmp_create_affinity_none_places() {
4102  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4103  KMP_ASSERT(__kmp_affinity_type == affinity_none);
4104  __kmp_affinity_num_masks = 1;
4105  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4106  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4107  KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4108 }
4109 
4110 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
4111  const Address *aa = &(((const AddrUnsPair *)a)->first);
4112  const Address *bb = &(((const AddrUnsPair *)b)->first);
4113  unsigned depth = aa->depth;
4114  unsigned i;
4115  KMP_DEBUG_ASSERT(depth == bb->depth);
4116  KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
4117  KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
4118  for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
4119  int j = depth - i - 1;
4120  if (aa->childNums[j] < bb->childNums[j])
4121  return -1;
4122  if (aa->childNums[j] > bb->childNums[j])
4123  return 1;
4124  }
4125  for (; i < depth; i++) {
4126  int j = i - __kmp_affinity_compact;
4127  if (aa->childNums[j] < bb->childNums[j])
4128  return -1;
4129  if (aa->childNums[j] > bb->childNums[j])
4130  return 1;
4131  }
4132  return 0;
4133 }
4134 
4135 static void __kmp_aux_affinity_initialize(void) {
4136  if (__kmp_affinity_masks != NULL) {
4137  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4138  return;
4139  }
4140 
4141  // Create the "full" mask - this defines all of the processors that we
4142  // consider to be in the machine model. If respect is set, then it is the
4143  // initialization thread's affinity mask. Otherwise, it is all processors that
4144  // we know about on the machine.
4145  if (__kmp_affin_fullMask == NULL) {
4146  KMP_CPU_ALLOC(__kmp_affin_fullMask);
4147  }
4148  if (KMP_AFFINITY_CAPABLE()) {
4149  if (__kmp_affinity_respect_mask) {
4150  __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4151 
4152  // Count the number of available processors.
4153  unsigned i;
4154  __kmp_avail_proc = 0;
4155  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4156  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4157  continue;
4158  }
4159  __kmp_avail_proc++;
4160  }
4161  if (__kmp_avail_proc > __kmp_xproc) {
4162  if (__kmp_affinity_verbose ||
4163  (__kmp_affinity_warnings &&
4164  (__kmp_affinity_type != affinity_none))) {
4165  KMP_WARNING(ErrorInitializeAffinity);
4166  }
4167  __kmp_affinity_type = affinity_none;
4168  KMP_AFFINITY_DISABLE();
4169  return;
4170  }
4171  } else {
4172  __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4173  __kmp_avail_proc = __kmp_xproc;
4174  }
4175  }
4176 
4177  if (__kmp_affinity_gran == affinity_gran_tile &&
4178  // check if user's request is valid
4179  __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
4180  KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
4181  __kmp_affinity_gran = affinity_gran_package;
4182  }
4183 
4184  int depth = -1;
4185  kmp_i18n_id_t msg_id = kmp_i18n_null;
4186 
4187  // For backward compatibility, setting KMP_CPUINFO_FILE =>
4188  // KMP_TOPOLOGY_METHOD=cpuinfo
4189  if ((__kmp_cpuinfo_file != NULL) &&
4190  (__kmp_affinity_top_method == affinity_top_method_all)) {
4191  __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4192  }
4193 
4194  if (__kmp_affinity_top_method == affinity_top_method_all) {
4195  // In the default code path, errors are not fatal - we just try using
4196  // another method. We only emit a warning message if affinity is on, or the
4197  // verbose flag is set, and the nowarnings flag was not set.
4198  const char *file_name = NULL;
4199  int line = 0;
4200 #if KMP_USE_HWLOC
4201  if (depth < 0 &&
4202  __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4203  if (__kmp_affinity_verbose) {
4204  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4205  }
4206  if (!__kmp_hwloc_error) {
4207  depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4208  if (depth == 0) {
4209  KMP_EXIT_AFF_NONE;
4210  } else if (depth < 0 && __kmp_affinity_verbose) {
4211  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4212  }
4213  } else if (__kmp_affinity_verbose) {
4214  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4215  }
4216  }
4217 #endif
4218 
4219 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4220 
4221  if (depth < 0) {
4222  if (__kmp_affinity_verbose) {
4223  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4224  }
4225 
4226  file_name = NULL;
4227  depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4228  if (depth == 0) {
4229  KMP_EXIT_AFF_NONE;
4230  }
4231 
4232  if (depth < 0) {
4233  if (__kmp_affinity_verbose) {
4234  if (msg_id != kmp_i18n_null) {
4235  KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
4236  __kmp_i18n_catgets(msg_id),
4237  KMP_I18N_STR(DecodingLegacyAPIC));
4238  } else {
4239  KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
4240  KMP_I18N_STR(DecodingLegacyAPIC));
4241  }
4242  }
4243 
4244  file_name = NULL;
4245  depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4246  if (depth == 0) {
4247  KMP_EXIT_AFF_NONE;
4248  }
4249  }
4250  }
4251 
4252 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4253 
4254 #if KMP_OS_LINUX
4255 
4256  if (depth < 0) {
4257  if (__kmp_affinity_verbose) {
4258  if (msg_id != kmp_i18n_null) {
4259  KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
4260  __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
4261  } else {
4262  KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
4263  }
4264  }
4265 
4266  FILE *f = fopen("/proc/cpuinfo", "r");
4267  if (f == NULL) {
4268  msg_id = kmp_i18n_str_CantOpenCpuinfo;
4269  } else {
4270  file_name = "/proc/cpuinfo";
4271  depth =
4272  __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4273  fclose(f);
4274  if (depth == 0) {
4275  KMP_EXIT_AFF_NONE;
4276  }
4277  }
4278  }
4279 
4280 #endif /* KMP_OS_LINUX */
4281 
4282 #if KMP_GROUP_AFFINITY
4283 
4284  if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
4285  if (__kmp_affinity_verbose) {
4286  KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4287  }
4288 
4289  depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4290  KMP_ASSERT(depth != 0);
4291  }
4292 
4293 #endif /* KMP_GROUP_AFFINITY */
4294 
4295  if (depth < 0) {
4296  if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
4297  if (file_name == NULL) {
4298  KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
4299  } else if (line == 0) {
4300  KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
4301  } else {
4302  KMP_INFORM(UsingFlatOSFileLine, file_name, line,
4303  __kmp_i18n_catgets(msg_id));
4304  }
4305  }
4306  // FIXME - print msg if msg_id = kmp_i18n_null ???
4307 
4308  file_name = "";
4309  depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4310  if (depth == 0) {
4311  KMP_EXIT_AFF_NONE;
4312  }
4313  KMP_ASSERT(depth > 0);
4314  KMP_ASSERT(address2os != NULL);
4315  }
4316  }
4317 
4318 #if KMP_USE_HWLOC
4319  else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4320  KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4321  if (__kmp_affinity_verbose) {
4322  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4323  }
4324  depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4325  if (depth == 0) {
4326  KMP_EXIT_AFF_NONE;
4327  }
4328  }
4329 #endif // KMP_USE_HWLOC
4330 
4331 // If the user has specified that a paricular topology discovery method is to be
4332 // used, then we abort if that method fails. The exception is group affinity,
4333 // which might have been implicitly set.
4334 
4335 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4336 
4337  else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
4338  if (__kmp_affinity_verbose) {
4339  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4340  }
4341 
4342  depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4343  if (depth == 0) {
4344  KMP_EXIT_AFF_NONE;
4345  }
4346  if (depth < 0) {
4347  KMP_ASSERT(msg_id != kmp_i18n_null);
4348  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4349  }
4350  } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4351  if (__kmp_affinity_verbose) {
4352  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4353  }
4354 
4355  depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4356  if (depth == 0) {
4357  KMP_EXIT_AFF_NONE;
4358  }
4359  if (depth < 0) {
4360  KMP_ASSERT(msg_id != kmp_i18n_null);
4361  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4362  }
4363  }
4364 
4365 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4366 
4367  else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4368  const char *filename;
4369  if (__kmp_cpuinfo_file != NULL) {
4370  filename = __kmp_cpuinfo_file;
4371  } else {
4372  filename = "/proc/cpuinfo";
4373  }
4374 
4375  if (__kmp_affinity_verbose) {
4376  KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4377  }
4378 
4379  FILE *f = fopen(filename, "r");
4380  if (f == NULL) {
4381  int code = errno;
4382  if (__kmp_cpuinfo_file != NULL) {
4383  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4384  KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
4385  } else {
4386  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4387  __kmp_msg_null);
4388  }
4389  }
4390  int line = 0;
4391  depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4392  fclose(f);
4393  if (depth < 0) {
4394  KMP_ASSERT(msg_id != kmp_i18n_null);
4395  if (line > 0) {
4396  KMP_FATAL(FileLineMsgExiting, filename, line,
4397  __kmp_i18n_catgets(msg_id));
4398  } else {
4399  KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4400  }
4401  }
4402  if (__kmp_affinity_type == affinity_none) {
4403  KMP_ASSERT(depth == 0);
4404  KMP_EXIT_AFF_NONE;
4405  }
4406  }
4407 
4408 #if KMP_GROUP_AFFINITY
4409 
4410  else if (__kmp_affinity_top_method == affinity_top_method_group) {
4411  if (__kmp_affinity_verbose) {
4412  KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4413  }
4414 
4415  depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4416  KMP_ASSERT(depth != 0);
4417  if (depth < 0) {
4418  KMP_ASSERT(msg_id != kmp_i18n_null);
4419  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4420  }
4421  }
4422 
4423 #endif /* KMP_GROUP_AFFINITY */
4424 
4425  else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4426  if (__kmp_affinity_verbose) {
4427  KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4428  }
4429 
4430  depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4431  if (depth == 0) {
4432  KMP_EXIT_AFF_NONE;
4433  }
4434  // should not fail
4435  KMP_ASSERT(depth > 0);
4436  KMP_ASSERT(address2os != NULL);
4437  }
4438 
4439 #if KMP_USE_HIER_SCHED
4440  __kmp_dispatch_set_hierarchy_values();
4441 #endif
4442 
4443  if (address2os == NULL) {
4444  if (KMP_AFFINITY_CAPABLE() &&
4445  (__kmp_affinity_verbose ||
4446  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4447  KMP_WARNING(ErrorInitializeAffinity);
4448  }
4449  __kmp_affinity_type = affinity_none;
4450  __kmp_create_affinity_none_places();
4451  KMP_AFFINITY_DISABLE();
4452  return;
4453  }
4454 
4455  if (__kmp_affinity_gran == affinity_gran_tile
4456 #if KMP_USE_HWLOC
4457  && __kmp_tile_depth == 0
4458 #endif
4459  ) {
4460  // tiles requested but not detected, warn user on this
4461  KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
4462  }
4463 
4464  __kmp_apply_thread_places(&address2os, depth);
4465 
4466  // Create the table of masks, indexed by thread Id.
4467  unsigned maxIndex;
4468  unsigned numUnique;
4469  kmp_affin_mask_t *osId2Mask =
4470  __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4471  if (__kmp_affinity_gran_levels == 0) {
4472  KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4473  }
4474 
4475  // Set the childNums vector in all Address objects. This must be done before
4476  // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4477  // account the setting of __kmp_affinity_compact.
4478  __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4479 
4480  switch (__kmp_affinity_type) {
4481 
4482  case affinity_explicit:
4483  KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4484  if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4485  __kmp_affinity_process_proclist(
4486  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4487  __kmp_affinity_proclist, osId2Mask, maxIndex);
4488  } else {
4489  __kmp_affinity_process_placelist(
4490  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4491  __kmp_affinity_proclist, osId2Mask, maxIndex);
4492  }
4493  if (__kmp_affinity_num_masks == 0) {
4494  if (__kmp_affinity_verbose ||
4495  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4496  KMP_WARNING(AffNoValidProcID);
4497  }
4498  __kmp_affinity_type = affinity_none;
4499  __kmp_create_affinity_none_places();
4500  return;
4501  }
4502  break;
4503 
4504  // The other affinity types rely on sorting the Addresses according to some
4505  // permutation of the machine topology tree. Set __kmp_affinity_compact and
4506  // __kmp_affinity_offset appropriately, then jump to a common code fragment
4507  // to do the sort and create the array of affinity masks.
4508 
4509  case affinity_logical:
4510  __kmp_affinity_compact = 0;
4511  if (__kmp_affinity_offset) {
4512  __kmp_affinity_offset =
4513  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4514  }
4515  goto sortAddresses;
4516 
4517  case affinity_physical:
4518  if (__kmp_nThreadsPerCore > 1) {
4519  __kmp_affinity_compact = 1;
4520  if (__kmp_affinity_compact >= depth) {
4521  __kmp_affinity_compact = 0;
4522  }
4523  } else {
4524  __kmp_affinity_compact = 0;
4525  }
4526  if (__kmp_affinity_offset) {
4527  __kmp_affinity_offset =
4528  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4529  }
4530  goto sortAddresses;
4531 
4532  case affinity_scatter:
4533  if (__kmp_affinity_compact >= depth) {
4534  __kmp_affinity_compact = 0;
4535  } else {
4536  __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4537  }
4538  goto sortAddresses;
4539 
4540  case affinity_compact:
4541  if (__kmp_affinity_compact >= depth) {
4542  __kmp_affinity_compact = depth - 1;
4543  }
4544  goto sortAddresses;
4545 
4546  case affinity_balanced:
4547  if (depth <= 1) {
4548  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4549  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4550  }
4551  __kmp_affinity_type = affinity_none;
4552  __kmp_create_affinity_none_places();
4553  return;
4554  } else if (!__kmp_affinity_uniform_topology()) {
4555  // Save the depth for further usage
4556  __kmp_aff_depth = depth;
4557 
4558  int core_level = __kmp_affinity_find_core_level(
4559  address2os, __kmp_avail_proc, depth - 1);
4560  int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4561  depth - 1, core_level);
4562  int maxprocpercore = __kmp_affinity_max_proc_per_core(
4563  address2os, __kmp_avail_proc, depth - 1, core_level);
4564 
4565  int nproc = ncores * maxprocpercore;
4566  if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4567  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4568  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4569  }
4570  __kmp_affinity_type = affinity_none;
4571  return;
4572  }
4573 
4574  procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4575  for (int i = 0; i < nproc; i++) {
4576  procarr[i] = -1;
4577  }
4578 
4579  int lastcore = -1;
4580  int inlastcore = 0;
4581  for (int i = 0; i < __kmp_avail_proc; i++) {
4582  int proc = address2os[i].second;
4583  int core =
4584  __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4585 
4586  if (core == lastcore) {
4587  inlastcore++;
4588  } else {
4589  inlastcore = 0;
4590  }
4591  lastcore = core;
4592 
4593  procarr[core * maxprocpercore + inlastcore] = proc;
4594  }
4595  }
4596  if (__kmp_affinity_compact >= depth) {
4597  __kmp_affinity_compact = depth - 1;
4598  }
4599 
4600  sortAddresses:
4601  // Allocate the gtid->affinity mask table.
4602  if (__kmp_affinity_dups) {
4603  __kmp_affinity_num_masks = __kmp_avail_proc;
4604  } else {
4605  __kmp_affinity_num_masks = numUnique;
4606  }
4607 
4608  if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4609  (__kmp_affinity_num_places > 0) &&
4610  ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4611  __kmp_affinity_num_masks = __kmp_affinity_num_places;
4612  }
4613 
4614  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4615 
4616  // Sort the address2os table according to the current setting of
4617  // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4618  qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4619  __kmp_affinity_cmp_Address_child_num);
4620  {
4621  int i;
4622  unsigned j;
4623  for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4624  if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4625  continue;
4626  }
4627  unsigned osId = address2os[i].second;
4628  kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4629  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4630  KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4631  KMP_CPU_COPY(dest, src);
4632  if (++j >= __kmp_affinity_num_masks) {
4633  break;
4634  }
4635  }
4636  KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4637  }
4638  break;
4639 
4640  default:
4641  KMP_ASSERT2(0, "Unexpected affinity setting");
4642  }
4643 
4644  KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4645  machine_hierarchy.init(address2os, __kmp_avail_proc);
4646 }
4647 #undef KMP_EXIT_AFF_NONE
4648 
4649 void __kmp_affinity_initialize(void) {
4650  // Much of the code above was written assumming that if a machine was not
4651  // affinity capable, then __kmp_affinity_type == affinity_none. We now
4652  // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4653  // There are too many checks for __kmp_affinity_type == affinity_none
4654  // in this code. Instead of trying to change them all, check if
4655  // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4656  // affinity_none, call the real initialization routine, then restore
4657  // __kmp_affinity_type to affinity_disabled.
4658  int disabled = (__kmp_affinity_type == affinity_disabled);
4659  if (!KMP_AFFINITY_CAPABLE()) {
4660  KMP_ASSERT(disabled);
4661  }
4662  if (disabled) {
4663  __kmp_affinity_type = affinity_none;
4664  }
4665  __kmp_aux_affinity_initialize();
4666  if (disabled) {
4667  __kmp_affinity_type = affinity_disabled;
4668  }
4669 }
4670 
4671 void __kmp_affinity_uninitialize(void) {
4672  if (__kmp_affinity_masks != NULL) {
4673  KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4674  __kmp_affinity_masks = NULL;
4675  }
4676  if (__kmp_affin_fullMask != NULL) {
4677  KMP_CPU_FREE(__kmp_affin_fullMask);
4678  __kmp_affin_fullMask = NULL;
4679  }
4680  __kmp_affinity_num_masks = 0;
4681  __kmp_affinity_type = affinity_default;
4682  __kmp_affinity_num_places = 0;
4683  if (__kmp_affinity_proclist != NULL) {
4684  __kmp_free(__kmp_affinity_proclist);
4685  __kmp_affinity_proclist = NULL;
4686  }
4687  if (address2os != NULL) {
4688  __kmp_free(address2os);
4689  address2os = NULL;
4690  }
4691  if (procarr != NULL) {
4692  __kmp_free(procarr);
4693  procarr = NULL;
4694  }
4695 #if KMP_USE_HWLOC
4696  if (__kmp_hwloc_topology != NULL) {
4697  hwloc_topology_destroy(__kmp_hwloc_topology);
4698  __kmp_hwloc_topology = NULL;
4699  }
4700 #endif
4701  KMPAffinity::destroy_api();
4702 }
4703 
4704 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4705  if (!KMP_AFFINITY_CAPABLE()) {
4706  return;
4707  }
4708 
4709  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4710  if (th->th.th_affin_mask == NULL) {
4711  KMP_CPU_ALLOC(th->th.th_affin_mask);
4712  } else {
4713  KMP_CPU_ZERO(th->th.th_affin_mask);
4714  }
4715 
4716  // Copy the thread mask to the kmp_info_t strucuture. If
4717  // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4718  // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4719  // then the full mask is the same as the mask of the initialization thread.
4720  kmp_affin_mask_t *mask;
4721  int i;
4722 
4723  if (KMP_AFFINITY_NON_PROC_BIND) {
4724  if ((__kmp_affinity_type == affinity_none) ||
4725  (__kmp_affinity_type == affinity_balanced)) {
4726 #if KMP_GROUP_AFFINITY
4727  if (__kmp_num_proc_groups > 1) {
4728  return;
4729  }
4730 #endif
4731  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4732  i = 0;
4733  mask = __kmp_affin_fullMask;
4734  } else {
4735  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4736  i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4737  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4738  }
4739  } else {
4740  if ((!isa_root) ||
4741  (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4742 #if KMP_GROUP_AFFINITY
4743  if (__kmp_num_proc_groups > 1) {
4744  return;
4745  }
4746 #endif
4747  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4748  i = KMP_PLACE_ALL;
4749  mask = __kmp_affin_fullMask;
4750  } else {
4751  // int i = some hash function or just a counter that doesn't
4752  // always start at 0. Use gtid for now.
4753  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4754  i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4755  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4756  }
4757  }
4758 
4759  th->th.th_current_place = i;
4760  if (isa_root) {
4761  th->th.th_new_place = i;
4762  th->th.th_first_place = 0;
4763  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4764  } else if (KMP_AFFINITY_NON_PROC_BIND) {
4765  // When using a Non-OMP_PROC_BIND affinity method,
4766  // set all threads' place-partition-var to the entire place list
4767  th->th.th_first_place = 0;
4768  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4769  }
4770 
4771  if (i == KMP_PLACE_ALL) {
4772  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4773  gtid));
4774  } else {
4775  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4776  gtid, i));
4777  }
4778 
4779  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4780 
4781  if (__kmp_affinity_verbose
4782  /* to avoid duplicate printing (will be correctly printed on barrier) */
4783  && (__kmp_affinity_type == affinity_none ||
4784  (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4785  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4786  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4787  th->th.th_affin_mask);
4788  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4789  __kmp_gettid(), gtid, buf);
4790  }
4791 
4792 #if KMP_OS_WINDOWS
4793  // On Windows* OS, the process affinity mask might have changed. If the user
4794  // didn't request affinity and this call fails, just continue silently.
4795  // See CQ171393.
4796  if (__kmp_affinity_type == affinity_none) {
4797  __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4798  } else
4799 #endif
4800  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4801 }
4802 
4803 void __kmp_affinity_set_place(int gtid) {
4804  if (!KMP_AFFINITY_CAPABLE()) {
4805  return;
4806  }
4807 
4808  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4809 
4810  KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4811  "place = %d)\n",
4812  gtid, th->th.th_new_place, th->th.th_current_place));
4813 
4814  // Check that the new place is within this thread's partition.
4815  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4816  KMP_ASSERT(th->th.th_new_place >= 0);
4817  KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4818  if (th->th.th_first_place <= th->th.th_last_place) {
4819  KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4820  (th->th.th_new_place <= th->th.th_last_place));
4821  } else {
4822  KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4823  (th->th.th_new_place >= th->th.th_last_place));
4824  }
4825 
4826  // Copy the thread mask to the kmp_info_t strucuture,
4827  // and set this thread's affinity.
4828  kmp_affin_mask_t *mask =
4829  KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4830  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4831  th->th.th_current_place = th->th.th_new_place;
4832 
4833  if (__kmp_affinity_verbose) {
4834  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4835  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4836  th->th.th_affin_mask);
4837  KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4838  __kmp_gettid(), gtid, buf);
4839  }
4840  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4841 }
4842 
4843 int __kmp_aux_set_affinity(void **mask) {
4844  int gtid;
4845  kmp_info_t *th;
4846  int retval;
4847 
4848  if (!KMP_AFFINITY_CAPABLE()) {
4849  return -1;
4850  }
4851 
4852  gtid = __kmp_entry_gtid();
4853  KA_TRACE(1000, (""); {
4854  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4855  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4856  (kmp_affin_mask_t *)(*mask));
4857  __kmp_debug_printf(
4858  "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4859  buf);
4860  });
4861 
4862  if (__kmp_env_consistency_check) {
4863  if ((mask == NULL) || (*mask == NULL)) {
4864  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4865  } else {
4866  unsigned proc;
4867  int num_procs = 0;
4868 
4869  KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4870  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4871  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4872  }
4873  if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4874  continue;
4875  }
4876  num_procs++;
4877  }
4878  if (num_procs == 0) {
4879  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4880  }
4881 
4882 #if KMP_GROUP_AFFINITY
4883  if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4884  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4885  }
4886 #endif /* KMP_GROUP_AFFINITY */
4887  }
4888  }
4889 
4890  th = __kmp_threads[gtid];
4891  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4892  retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4893  if (retval == 0) {
4894  KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4895  }
4896 
4897  th->th.th_current_place = KMP_PLACE_UNDEFINED;
4898  th->th.th_new_place = KMP_PLACE_UNDEFINED;
4899  th->th.th_first_place = 0;
4900  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4901 
4902  // Turn off 4.0 affinity for the current tread at this parallel level.
4903  th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4904 
4905  return retval;
4906 }
4907 
4908 int __kmp_aux_get_affinity(void **mask) {
4909  int gtid;
4910  int retval;
4911  kmp_info_t *th;
4912 
4913  if (!KMP_AFFINITY_CAPABLE()) {
4914  return -1;
4915  }
4916 
4917  gtid = __kmp_entry_gtid();
4918  th = __kmp_threads[gtid];
4919  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4920 
4921  KA_TRACE(1000, (""); {
4922  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4923  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4924  th->th.th_affin_mask);
4925  __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4926  gtid, buf);
4927  });
4928 
4929  if (__kmp_env_consistency_check) {
4930  if ((mask == NULL) || (*mask == NULL)) {
4931  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4932  }
4933  }
4934 
4935 #if !KMP_OS_WINDOWS
4936 
4937  retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4938  KA_TRACE(1000, (""); {
4939  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4940  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4941  (kmp_affin_mask_t *)(*mask));
4942  __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4943  gtid, buf);
4944  });
4945  return retval;
4946 
4947 #else
4948 
4949  KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4950  return 0;
4951 
4952 #endif /* KMP_OS_WINDOWS */
4953 }
4954 
4955 int __kmp_aux_get_affinity_max_proc() {
4956  if (!KMP_AFFINITY_CAPABLE()) {
4957  return 0;
4958  }
4959 #if KMP_GROUP_AFFINITY
4960  if (__kmp_num_proc_groups > 1) {
4961  return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4962  }
4963 #endif
4964  return __kmp_xproc;
4965 }
4966 
4967 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4968  if (!KMP_AFFINITY_CAPABLE()) {
4969  return -1;
4970  }
4971 
4972  KA_TRACE(1000, (""); {
4973  int gtid = __kmp_entry_gtid();
4974  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4975  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4976  (kmp_affin_mask_t *)(*mask));
4977  __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4978  "affinity mask for thread %d = %s\n",
4979  proc, gtid, buf);
4980  });
4981 
4982  if (__kmp_env_consistency_check) {
4983  if ((mask == NULL) || (*mask == NULL)) {
4984  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4985  }
4986  }
4987 
4988  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4989  return -1;
4990  }
4991  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4992  return -2;
4993  }
4994 
4995  KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4996  return 0;
4997 }
4998 
4999 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5000  if (!KMP_AFFINITY_CAPABLE()) {
5001  return -1;
5002  }
5003 
5004  KA_TRACE(1000, (""); {
5005  int gtid = __kmp_entry_gtid();
5006  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5007  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5008  (kmp_affin_mask_t *)(*mask));
5009  __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5010  "affinity mask for thread %d = %s\n",
5011  proc, gtid, buf);
5012  });
5013 
5014  if (__kmp_env_consistency_check) {
5015  if ((mask == NULL) || (*mask == NULL)) {
5016  KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5017  }
5018  }
5019 
5020  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5021  return -1;
5022  }
5023  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5024  return -2;
5025  }
5026 
5027  KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5028  return 0;
5029 }
5030 
5031 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5032  if (!KMP_AFFINITY_CAPABLE()) {
5033  return -1;
5034  }
5035 
5036  KA_TRACE(1000, (""); {
5037  int gtid = __kmp_entry_gtid();
5038  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5039  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5040  (kmp_affin_mask_t *)(*mask));
5041  __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5042  "affinity mask for thread %d = %s\n",
5043  proc, gtid, buf);
5044  });
5045 
5046  if (__kmp_env_consistency_check) {
5047  if ((mask == NULL) || (*mask == NULL)) {
5048  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5049  }
5050  }
5051 
5052  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5053  return -1;
5054  }
5055  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5056  return 0;
5057  }
5058 
5059  return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5060 }
5061 
5062 // Dynamic affinity settings - Affinity balanced
5063 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5064  KMP_DEBUG_ASSERT(th);
5065  bool fine_gran = true;
5066  int tid = th->th.th_info.ds.ds_tid;
5067 
5068  switch (__kmp_affinity_gran) {
5069  case affinity_gran_fine:
5070  case affinity_gran_thread:
5071  break;
5072  case affinity_gran_core:
5073  if (__kmp_nThreadsPerCore > 1) {
5074  fine_gran = false;
5075  }
5076  break;
5077  case affinity_gran_package:
5078  if (nCoresPerPkg > 1) {
5079  fine_gran = false;
5080  }
5081  break;
5082  default:
5083  fine_gran = false;
5084  }
5085 
5086  if (__kmp_affinity_uniform_topology()) {
5087  int coreID;
5088  int threadID;
5089  // Number of hyper threads per core in HT machine
5090  int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5091  // Number of cores
5092  int ncores = __kmp_ncores;
5093  if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5094  __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5095  ncores = nPackages;
5096  }
5097  // How many threads will be bound to each core
5098  int chunk = nthreads / ncores;
5099  // How many cores will have an additional thread bound to it - "big cores"
5100  int big_cores = nthreads % ncores;
5101  // Number of threads on the big cores
5102  int big_nth = (chunk + 1) * big_cores;
5103  if (tid < big_nth) {
5104  coreID = tid / (chunk + 1);
5105  threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5106  } else { // tid >= big_nth
5107  coreID = (tid - big_cores) / chunk;
5108  threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5109  }
5110 
5111  KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5112  "Illegal set affinity operation when not capable");
5113 
5114  kmp_affin_mask_t *mask = th->th.th_affin_mask;
5115  KMP_CPU_ZERO(mask);
5116 
5117  if (fine_gran) {
5118  int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
5119  KMP_CPU_SET(osID, mask);
5120  } else {
5121  for (int i = 0; i < __kmp_nth_per_core; i++) {
5122  int osID;
5123  osID = address2os[coreID * __kmp_nth_per_core + i].second;
5124  KMP_CPU_SET(osID, mask);
5125  }
5126  }
5127  if (__kmp_affinity_verbose) {
5128  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5129  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5130  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5131  __kmp_gettid(), tid, buf);
5132  }
5133  __kmp_set_system_affinity(mask, TRUE);
5134  } else { // Non-uniform topology
5135 
5136  kmp_affin_mask_t *mask = th->th.th_affin_mask;
5137  KMP_CPU_ZERO(mask);
5138 
5139  int core_level = __kmp_affinity_find_core_level(
5140  address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
5141  int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
5142  __kmp_aff_depth - 1, core_level);
5143  int nth_per_core = __kmp_affinity_max_proc_per_core(
5144  address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5145 
5146  // For performance gain consider the special case nthreads ==
5147  // __kmp_avail_proc
5148  if (nthreads == __kmp_avail_proc) {
5149  if (fine_gran) {
5150  int osID = address2os[tid].second;
5151  KMP_CPU_SET(osID, mask);
5152  } else {
5153  int core = __kmp_affinity_find_core(address2os, tid,
5154  __kmp_aff_depth - 1, core_level);
5155  for (int i = 0; i < __kmp_avail_proc; i++) {
5156  int osID = address2os[i].second;
5157  if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
5158  core_level) == core) {
5159  KMP_CPU_SET(osID, mask);
5160  }
5161  }
5162  }
5163  } else if (nthreads <= ncores) {
5164 
5165  int core = 0;
5166  for (int i = 0; i < ncores; i++) {
5167  // Check if this core from procarr[] is in the mask
5168  int in_mask = 0;
5169  for (int j = 0; j < nth_per_core; j++) {
5170  if (procarr[i * nth_per_core + j] != -1) {
5171  in_mask = 1;
5172  break;
5173  }
5174  }
5175  if (in_mask) {
5176  if (tid == core) {
5177  for (int j = 0; j < nth_per_core; j++) {
5178  int osID = procarr[i * nth_per_core + j];
5179  if (osID != -1) {
5180  KMP_CPU_SET(osID, mask);
5181  // For fine granularity it is enough to set the first available
5182  // osID for this core
5183  if (fine_gran) {
5184  break;
5185  }
5186  }
5187  }
5188  break;
5189  } else {
5190  core++;
5191  }
5192  }
5193  }
5194  } else { // nthreads > ncores
5195  // Array to save the number of processors at each core
5196  int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5197  // Array to save the number of cores with "x" available processors;
5198  int *ncores_with_x_procs =
5199  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5200  // Array to save the number of cores with # procs from x to nth_per_core
5201  int *ncores_with_x_to_max_procs =
5202  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5203 
5204  for (int i = 0; i <= nth_per_core; i++) {
5205  ncores_with_x_procs[i] = 0;
5206  ncores_with_x_to_max_procs[i] = 0;
5207  }
5208 
5209  for (int i = 0; i < ncores; i++) {
5210  int cnt = 0;
5211  for (int j = 0; j < nth_per_core; j++) {
5212  if (procarr[i * nth_per_core + j] != -1) {
5213  cnt++;
5214  }
5215  }
5216  nproc_at_core[i] = cnt;
5217  ncores_with_x_procs[cnt]++;
5218  }
5219 
5220  for (int i = 0; i <= nth_per_core; i++) {
5221  for (int j = i; j <= nth_per_core; j++) {
5222  ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5223  }
5224  }
5225 
5226  // Max number of processors
5227  int nproc = nth_per_core * ncores;
5228  // An array to keep number of threads per each context
5229  int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5230  for (int i = 0; i < nproc; i++) {
5231  newarr[i] = 0;
5232  }
5233 
5234  int nth = nthreads;
5235  int flag = 0;
5236  while (nth > 0) {
5237  for (int j = 1; j <= nth_per_core; j++) {
5238  int cnt = ncores_with_x_to_max_procs[j];
5239  for (int i = 0; i < ncores; i++) {
5240  // Skip the core with 0 processors
5241  if (nproc_at_core[i] == 0) {
5242  continue;
5243  }
5244  for (int k = 0; k < nth_per_core; k++) {
5245  if (procarr[i * nth_per_core + k] != -1) {
5246  if (newarr[i * nth_per_core + k] == 0) {
5247  newarr[i * nth_per_core + k] = 1;
5248  cnt--;
5249  nth--;
5250  break;
5251  } else {
5252  if (flag != 0) {
5253  newarr[i * nth_per_core + k]++;
5254  cnt--;
5255  nth--;
5256  break;
5257  }
5258  }
5259  }
5260  }
5261  if (cnt == 0 || nth == 0) {
5262  break;
5263  }
5264  }
5265  if (nth == 0) {
5266  break;
5267  }
5268  }
5269  flag = 1;
5270  }
5271  int sum = 0;
5272  for (int i = 0; i < nproc; i++) {
5273  sum += newarr[i];
5274  if (sum > tid) {
5275  if (fine_gran) {
5276  int osID = procarr[i];
5277  KMP_CPU_SET(osID, mask);
5278  } else {
5279  int coreID = i / nth_per_core;
5280  for (int ii = 0; ii < nth_per_core; ii++) {
5281  int osID = procarr[coreID * nth_per_core + ii];
5282  if (osID != -1) {
5283  KMP_CPU_SET(osID, mask);
5284  }
5285  }
5286  }
5287  break;
5288  }
5289  }
5290  __kmp_free(newarr);
5291  }
5292 
5293  if (__kmp_affinity_verbose) {
5294  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5295  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5296  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5297  __kmp_gettid(), tid, buf);
5298  }
5299  __kmp_set_system_affinity(mask, TRUE);
5300  }
5301 }
5302 
5303 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5304 // We don't need this entry for Windows because
5305 // there is GetProcessAffinityMask() api
5306 //
5307 // The intended usage is indicated by these steps:
5308 // 1) The user gets the current affinity mask
5309 // 2) Then sets the affinity by calling this function
5310 // 3) Error check the return value
5311 // 4) Use non-OpenMP parallelization
5312 // 5) Reset the affinity to what was stored in step 1)
5313 #ifdef __cplusplus
5314 extern "C"
5315 #endif
5316  int
5317  kmp_set_thread_affinity_mask_initial()
5318 // the function returns 0 on success,
5319 // -1 if we cannot bind thread
5320 // >0 (errno) if an error happened during binding
5321 {
5322  int gtid = __kmp_get_gtid();
5323  if (gtid < 0) {
5324  // Do not touch non-omp threads
5325  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5326  "non-omp thread, returning\n"));
5327  return -1;
5328  }
5329  if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5330  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5331  "affinity not initialized, returning\n"));
5332  return -1;
5333  }
5334  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5335  "set full mask for thread %d\n",
5336  gtid));
5337  KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5338  return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5339 }
5340 #endif
5341 
5342 #endif // KMP_AFFINITY_SUPPORTED