LLVM OpenMP* Runtime Library
kmp_dispatch.cpp
1 /*
2  * kmp_dispatch.cpp: dynamic scheduling - iteration initialization and dispatch.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 /* Dynamic scheduling initialization and dispatch.
14  *
15  * NOTE: __kmp_nth is a constant inside of any dispatch loop, however
16  * it may change values between parallel regions. __kmp_max_nth
17  * is the largest value __kmp_nth may take, 1 is the smallest.
18  */
19 
20 #include "kmp.h"
21 #include "kmp_error.h"
22 #include "kmp_i18n.h"
23 #include "kmp_itt.h"
24 #include "kmp_stats.h"
25 #include "kmp_str.h"
26 #if KMP_USE_X87CONTROL
27 #include <float.h>
28 #endif
29 #include "kmp_lock.h"
30 #include "kmp_dispatch.h"
31 #if KMP_USE_HIER_SCHED
32 #include "kmp_dispatch_hier.h"
33 #endif
34 
35 #if OMPT_SUPPORT
36 #include "ompt-specific.h"
37 #endif
38 
39 /* ------------------------------------------------------------------------ */
40 /* ------------------------------------------------------------------------ */
41 
42 void __kmp_dispatch_deo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
43  kmp_info_t *th;
44 
45  KMP_DEBUG_ASSERT(gtid_ref);
46 
47  if (__kmp_env_consistency_check) {
48  th = __kmp_threads[*gtid_ref];
49  if (th->th.th_root->r.r_active &&
50  (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none)) {
51 #if KMP_USE_DYNAMIC_LOCK
52  __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL, 0);
53 #else
54  __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL);
55 #endif
56  }
57  }
58 }
59 
60 void __kmp_dispatch_dxo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
61  kmp_info_t *th;
62 
63  if (__kmp_env_consistency_check) {
64  th = __kmp_threads[*gtid_ref];
65  if (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none) {
66  __kmp_pop_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref);
67  }
68  }
69 }
70 
71 // Returns either SCHEDULE_MONOTONIC or SCHEDULE_NONMONOTONIC
72 static inline int __kmp_get_monotonicity(enum sched_type schedule,
73  bool use_hier = false) {
74  // Pick up the nonmonotonic/monotonic bits from the scheduling type
75  int monotonicity;
76  // default to monotonic
77  monotonicity = SCHEDULE_MONOTONIC;
78  if (SCHEDULE_HAS_NONMONOTONIC(schedule))
79  monotonicity = SCHEDULE_NONMONOTONIC;
80  else if (SCHEDULE_HAS_MONOTONIC(schedule))
81  monotonicity = SCHEDULE_MONOTONIC;
82  return monotonicity;
83 }
84 
85 // Initialize a dispatch_private_info_template<T> buffer for a particular
86 // type of schedule,chunk. The loop description is found in lb (lower bound),
87 // ub (upper bound), and st (stride). nproc is the number of threads relevant
88 // to the scheduling (often the number of threads in a team, but not always if
89 // hierarchical scheduling is used). tid is the id of the thread calling
90 // the function within the group of nproc threads. It will have a value
91 // between 0 and nproc - 1. This is often just the thread id within a team, but
92 // is not necessarily the case when using hierarchical scheduling.
93 // loc is the source file location of the corresponding loop
94 // gtid is the global thread id
95 template <typename T>
96 void __kmp_dispatch_init_algorithm(ident_t *loc, int gtid,
97  dispatch_private_info_template<T> *pr,
98  enum sched_type schedule, T lb, T ub,
99  typename traits_t<T>::signed_t st,
100 #if USE_ITT_BUILD
101  kmp_uint64 *cur_chunk,
102 #endif
103  typename traits_t<T>::signed_t chunk,
104  T nproc, T tid) {
105  typedef typename traits_t<T>::unsigned_t UT;
106  typedef typename traits_t<T>::floating_t DBL;
107 
108  int active;
109  T tc;
110  kmp_info_t *th;
111  kmp_team_t *team;
112  int monotonicity;
113  bool use_hier;
114 
115 #ifdef KMP_DEBUG
116  typedef typename traits_t<T>::signed_t ST;
117  {
118  char *buff;
119  // create format specifiers before the debug output
120  buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d called "
121  "pr:%%p lb:%%%s ub:%%%s st:%%%s "
122  "schedule:%%d chunk:%%%s nproc:%%%s tid:%%%s\n",
123  traits_t<T>::spec, traits_t<T>::spec,
124  traits_t<ST>::spec, traits_t<ST>::spec,
125  traits_t<T>::spec, traits_t<T>::spec);
126  KD_TRACE(10, (buff, gtid, pr, lb, ub, st, schedule, chunk, nproc, tid));
127  __kmp_str_free(&buff);
128  }
129 #endif
130  /* setup data */
131  th = __kmp_threads[gtid];
132  team = th->th.th_team;
133  active = !team->t.t_serialized;
134 
135 #if USE_ITT_BUILD
136  int itt_need_metadata_reporting =
137  __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
138  KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
139  team->t.t_active_level == 1;
140 #endif
141 
142 #if KMP_USE_HIER_SCHED
143  use_hier = pr->flags.use_hier;
144 #else
145  use_hier = false;
146 #endif
147 
148  /* Pick up the nonmonotonic/monotonic bits from the scheduling type */
149  monotonicity = __kmp_get_monotonicity(schedule, use_hier);
150  schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
151 
152  /* Pick up the nomerge/ordered bits from the scheduling type */
153  if ((schedule >= kmp_nm_lower) && (schedule < kmp_nm_upper)) {
154  pr->flags.nomerge = TRUE;
155  schedule =
156  (enum sched_type)(((int)schedule) - (kmp_nm_lower - kmp_sch_lower));
157  } else {
158  pr->flags.nomerge = FALSE;
159  }
160  pr->type_size = traits_t<T>::type_size; // remember the size of variables
161  if (kmp_ord_lower & schedule) {
162  pr->flags.ordered = TRUE;
163  schedule =
164  (enum sched_type)(((int)schedule) - (kmp_ord_lower - kmp_sch_lower));
165  } else {
166  pr->flags.ordered = FALSE;
167  }
168  // Ordered overrides nonmonotonic
169  if (pr->flags.ordered) {
170  monotonicity = SCHEDULE_MONOTONIC;
171  }
172 
173  if (schedule == kmp_sch_static) {
174  schedule = __kmp_static;
175  } else {
176  if (schedule == kmp_sch_runtime) {
177  // Use the scheduling specified by OMP_SCHEDULE (or __kmp_sch_default if
178  // not specified)
179  schedule = team->t.t_sched.r_sched_type;
180  monotonicity = __kmp_get_monotonicity(schedule, use_hier);
181  schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
182  // Detail the schedule if needed (global controls are differentiated
183  // appropriately)
184  if (schedule == kmp_sch_guided_chunked) {
185  schedule = __kmp_guided;
186  } else if (schedule == kmp_sch_static) {
187  schedule = __kmp_static;
188  }
189  // Use the chunk size specified by OMP_SCHEDULE (or default if not
190  // specified)
191  chunk = team->t.t_sched.chunk;
192 #if USE_ITT_BUILD
193  if (cur_chunk)
194  *cur_chunk = chunk;
195 #endif
196 #ifdef KMP_DEBUG
197  {
198  char *buff;
199  // create format specifiers before the debug output
200  buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d new: "
201  "schedule:%%d chunk:%%%s\n",
202  traits_t<ST>::spec);
203  KD_TRACE(10, (buff, gtid, schedule, chunk));
204  __kmp_str_free(&buff);
205  }
206 #endif
207  } else {
208  if (schedule == kmp_sch_guided_chunked) {
209  schedule = __kmp_guided;
210  }
211  if (chunk <= 0) {
212  chunk = KMP_DEFAULT_CHUNK;
213  }
214  }
215 
216  if (schedule == kmp_sch_auto) {
217  // mapping and differentiation: in the __kmp_do_serial_initialize()
218  schedule = __kmp_auto;
219 #ifdef KMP_DEBUG
220  {
221  char *buff;
222  // create format specifiers before the debug output
223  buff = __kmp_str_format(
224  "__kmp_dispatch_init_algorithm: kmp_sch_auto: T#%%d new: "
225  "schedule:%%d chunk:%%%s\n",
226  traits_t<ST>::spec);
227  KD_TRACE(10, (buff, gtid, schedule, chunk));
228  __kmp_str_free(&buff);
229  }
230 #endif
231  }
232 #if KMP_STATIC_STEAL_ENABLED
233  // map nonmonotonic:dynamic to static steal
234  if (schedule == kmp_sch_dynamic_chunked) {
235  if (monotonicity == SCHEDULE_NONMONOTONIC)
236  schedule = kmp_sch_static_steal;
237  }
238 #endif
239  /* guided analytical not safe for too many threads */
240  if (schedule == kmp_sch_guided_analytical_chunked && nproc > 1 << 20) {
241  schedule = kmp_sch_guided_iterative_chunked;
242  KMP_WARNING(DispatchManyThreads);
243  }
244  if (schedule == kmp_sch_runtime_simd) {
245  // compiler provides simd_width in the chunk parameter
246  schedule = team->t.t_sched.r_sched_type;
247  monotonicity = __kmp_get_monotonicity(schedule, use_hier);
248  schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
249  // Detail the schedule if needed (global controls are differentiated
250  // appropriately)
251  if (schedule == kmp_sch_static || schedule == kmp_sch_auto ||
252  schedule == __kmp_static) {
253  schedule = kmp_sch_static_balanced_chunked;
254  } else {
255  if (schedule == kmp_sch_guided_chunked || schedule == __kmp_guided) {
256  schedule = kmp_sch_guided_simd;
257  }
258  chunk = team->t.t_sched.chunk * chunk;
259  }
260 #if USE_ITT_BUILD
261  if (cur_chunk)
262  *cur_chunk = chunk;
263 #endif
264 #ifdef KMP_DEBUG
265  {
266  char *buff;
267  // create format specifiers before the debug output
268  buff = __kmp_str_format(
269  "__kmp_dispatch_init_algorithm: T#%%d new: schedule:%%d"
270  " chunk:%%%s\n",
271  traits_t<ST>::spec);
272  KD_TRACE(10, (buff, gtid, schedule, chunk));
273  __kmp_str_free(&buff);
274  }
275 #endif
276  }
277  pr->u.p.parm1 = chunk;
278  }
279  KMP_ASSERT2((kmp_sch_lower < schedule && schedule < kmp_sch_upper),
280  "unknown scheduling type");
281 
282  pr->u.p.count = 0;
283 
284  if (__kmp_env_consistency_check) {
285  if (st == 0) {
286  __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited,
287  (pr->flags.ordered ? ct_pdo_ordered : ct_pdo), loc);
288  }
289  }
290  // compute trip count
291  if (st == 1) { // most common case
292  if (ub >= lb) {
293  tc = ub - lb + 1;
294  } else { // ub < lb
295  tc = 0; // zero-trip
296  }
297  } else if (st < 0) {
298  if (lb >= ub) {
299  // AC: cast to unsigned is needed for loops like (i=2B; i>-2B; i-=1B),
300  // where the division needs to be unsigned regardless of the result type
301  tc = (UT)(lb - ub) / (-st) + 1;
302  } else { // lb < ub
303  tc = 0; // zero-trip
304  }
305  } else { // st > 0
306  if (ub >= lb) {
307  // AC: cast to unsigned is needed for loops like (i=-2B; i<2B; i+=1B),
308  // where the division needs to be unsigned regardless of the result type
309  tc = (UT)(ub - lb) / st + 1;
310  } else { // ub < lb
311  tc = 0; // zero-trip
312  }
313  }
314 
315 #if KMP_STATS_ENABLED
316  if (KMP_MASTER_GTID(gtid)) {
317  KMP_COUNT_VALUE(OMP_loop_dynamic_total_iterations, tc);
318  }
319 #endif
320 
321  pr->u.p.lb = lb;
322  pr->u.p.ub = ub;
323  pr->u.p.st = st;
324  pr->u.p.tc = tc;
325 
326 #if KMP_OS_WINDOWS
327  pr->u.p.last_upper = ub + st;
328 #endif /* KMP_OS_WINDOWS */
329 
330  /* NOTE: only the active parallel region(s) has active ordered sections */
331 
332  if (active) {
333  if (pr->flags.ordered) {
334  pr->ordered_bumped = 0;
335  pr->u.p.ordered_lower = 1;
336  pr->u.p.ordered_upper = 0;
337  }
338  }
339 
340  switch (schedule) {
341 #if (KMP_STATIC_STEAL_ENABLED)
342  case kmp_sch_static_steal: {
343  T ntc, init;
344 
345  KD_TRACE(100,
346  ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_steal case\n",
347  gtid));
348 
349  ntc = (tc % chunk ? 1 : 0) + tc / chunk;
350  if (nproc > 1 && ntc >= nproc) {
351  KMP_COUNT_BLOCK(OMP_LOOP_STATIC_STEAL);
352  T id = tid;
353  T small_chunk, extras;
354 
355  small_chunk = ntc / nproc;
356  extras = ntc % nproc;
357 
358  init = id * small_chunk + (id < extras ? id : extras);
359  pr->u.p.count = init;
360  pr->u.p.ub = init + small_chunk + (id < extras ? 1 : 0);
361 
362  pr->u.p.parm2 = lb;
363  // parm3 is the number of times to attempt stealing which is
364  // proportional to the number of chunks per thread up until
365  // the maximum value of nproc.
366  pr->u.p.parm3 = KMP_MIN(small_chunk + extras, nproc);
367  pr->u.p.parm4 = (id + 1) % nproc; // remember neighbour tid
368  pr->u.p.st = st;
369  if (traits_t<T>::type_size > 4) {
370  // AC: TODO: check if 16-byte CAS available and use it to
371  // improve performance (probably wait for explicit request
372  // before spending time on this).
373  // For now use dynamically allocated per-thread lock,
374  // free memory in __kmp_dispatch_next when status==0.
375  KMP_DEBUG_ASSERT(th->th.th_dispatch->th_steal_lock == NULL);
376  th->th.th_dispatch->th_steal_lock =
377  (kmp_lock_t *)__kmp_allocate(sizeof(kmp_lock_t));
378  __kmp_init_lock(th->th.th_dispatch->th_steal_lock);
379  }
380  break;
381  } else {
382  /* too few chunks: switching to kmp_sch_dynamic_chunked */
383  schedule = kmp_sch_dynamic_chunked;
384  KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d switching to "
385  "kmp_sch_dynamic_chunked\n",
386  gtid));
387  if (pr->u.p.parm1 <= 0)
388  pr->u.p.parm1 = KMP_DEFAULT_CHUNK;
389  break;
390  } // if
391  } // case
392 #endif
393  case kmp_sch_static_balanced: {
394  T init, limit;
395 
396  KD_TRACE(
397  100,
398  ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_balanced case\n",
399  gtid));
400 
401  if (nproc > 1) {
402  T id = tid;
403 
404  if (tc < nproc) {
405  if (id < tc) {
406  init = id;
407  limit = id;
408  pr->u.p.parm1 = (id == tc - 1); /* parm1 stores *plastiter */
409  } else {
410  pr->u.p.count = 1; /* means no more chunks to execute */
411  pr->u.p.parm1 = FALSE;
412  break;
413  }
414  } else {
415  T small_chunk = tc / nproc;
416  T extras = tc % nproc;
417  init = id * small_chunk + (id < extras ? id : extras);
418  limit = init + small_chunk - (id < extras ? 0 : 1);
419  pr->u.p.parm1 = (id == nproc - 1);
420  }
421  } else {
422  if (tc > 0) {
423  init = 0;
424  limit = tc - 1;
425  pr->u.p.parm1 = TRUE;
426  } else {
427  // zero trip count
428  pr->u.p.count = 1; /* means no more chunks to execute */
429  pr->u.p.parm1 = FALSE;
430  break;
431  }
432  }
433 #if USE_ITT_BUILD
434  // Calculate chunk for metadata report
435  if (itt_need_metadata_reporting)
436  if (cur_chunk)
437  *cur_chunk = limit - init + 1;
438 #endif
439  if (st == 1) {
440  pr->u.p.lb = lb + init;
441  pr->u.p.ub = lb + limit;
442  } else {
443  // calculated upper bound, "ub" is user-defined upper bound
444  T ub_tmp = lb + limit * st;
445  pr->u.p.lb = lb + init * st;
446  // adjust upper bound to "ub" if needed, so that MS lastprivate will match
447  // it exactly
448  if (st > 0) {
449  pr->u.p.ub = (ub_tmp + st > ub ? ub : ub_tmp);
450  } else {
451  pr->u.p.ub = (ub_tmp + st < ub ? ub : ub_tmp);
452  }
453  }
454  if (pr->flags.ordered) {
455  pr->u.p.ordered_lower = init;
456  pr->u.p.ordered_upper = limit;
457  }
458  break;
459  } // case
460  case kmp_sch_static_balanced_chunked: {
461  // similar to balanced, but chunk adjusted to multiple of simd width
462  T nth = nproc;
463  KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d runtime(simd:static)"
464  " -> falling-through to static_greedy\n",
465  gtid));
466  schedule = kmp_sch_static_greedy;
467  if (nth > 1)
468  pr->u.p.parm1 = ((tc + nth - 1) / nth + chunk - 1) & ~(chunk - 1);
469  else
470  pr->u.p.parm1 = tc;
471  break;
472  } // case
473  case kmp_sch_guided_simd:
474  case kmp_sch_guided_iterative_chunked: {
475  KD_TRACE(
476  100,
477  ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_guided_iterative_chunked"
478  " case\n",
479  gtid));
480 
481  if (nproc > 1) {
482  if ((2L * chunk + 1) * nproc >= tc) {
483  /* chunk size too large, switch to dynamic */
484  schedule = kmp_sch_dynamic_chunked;
485  } else {
486  // when remaining iters become less than parm2 - switch to dynamic
487  pr->u.p.parm2 = guided_int_param * nproc * (chunk + 1);
488  *(double *)&pr->u.p.parm3 =
489  guided_flt_param / nproc; // may occupy parm3 and parm4
490  }
491  } else {
492  KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to "
493  "kmp_sch_static_greedy\n",
494  gtid));
495  schedule = kmp_sch_static_greedy;
496  /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */
497  KD_TRACE(
498  100,
499  ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n",
500  gtid));
501  pr->u.p.parm1 = tc;
502  } // if
503  } // case
504  break;
505  case kmp_sch_guided_analytical_chunked: {
506  KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d "
507  "kmp_sch_guided_analytical_chunked case\n",
508  gtid));
509 
510  if (nproc > 1) {
511  if ((2L * chunk + 1) * nproc >= tc) {
512  /* chunk size too large, switch to dynamic */
513  schedule = kmp_sch_dynamic_chunked;
514  } else {
515  /* commonly used term: (2 nproc - 1)/(2 nproc) */
516  DBL x;
517 
518 #if KMP_USE_X87CONTROL
519  /* Linux* OS already has 64-bit computation by default for long double,
520  and on Windows* OS on Intel(R) 64, /Qlong_double doesn't work. On
521  Windows* OS on IA-32 architecture, we need to set precision to 64-bit
522  instead of the default 53-bit. Even though long double doesn't work
523  on Windows* OS on Intel(R) 64, the resulting lack of precision is not
524  expected to impact the correctness of the algorithm, but this has not
525  been mathematically proven. */
526  // save original FPCW and set precision to 64-bit, as
527  // Windows* OS on IA-32 architecture defaults to 53-bit
528  unsigned int oldFpcw = _control87(0, 0);
529  _control87(_PC_64, _MCW_PC); // 0,0x30000
530 #endif
531  /* value used for comparison in solver for cross-over point */
532  long double target = ((long double)chunk * 2 + 1) * nproc / tc;
533 
534  /* crossover point--chunk indexes equal to or greater than
535  this point switch to dynamic-style scheduling */
536  UT cross;
537 
538  /* commonly used term: (2 nproc - 1)/(2 nproc) */
539  x = (long double)1.0 - (long double)0.5 / nproc;
540 
541 #ifdef KMP_DEBUG
542  { // test natural alignment
543  struct _test_a {
544  char a;
545  union {
546  char b;
547  DBL d;
548  };
549  } t;
550  ptrdiff_t natural_alignment =
551  (ptrdiff_t)&t.b - (ptrdiff_t)&t - (ptrdiff_t)1;
552  //__kmp_warn( " %llx %llx %lld", (long long)&t.d, (long long)&t, (long
553  // long)natural_alignment );
554  KMP_DEBUG_ASSERT(
555  (((ptrdiff_t)&pr->u.p.parm3) & (natural_alignment)) == 0);
556  }
557 #endif // KMP_DEBUG
558 
559  /* save the term in thread private dispatch structure */
560  *(DBL *)&pr->u.p.parm3 = x;
561 
562  /* solve for the crossover point to the nearest integer i for which C_i
563  <= chunk */
564  {
565  UT left, right, mid;
566  long double p;
567 
568  /* estimate initial upper and lower bound */
569 
570  /* doesn't matter what value right is as long as it is positive, but
571  it affects performance of the solver */
572  right = 229;
573  p = __kmp_pow<UT>(x, right);
574  if (p > target) {
575  do {
576  p *= p;
577  right <<= 1;
578  } while (p > target && right < (1 << 27));
579  /* lower bound is previous (failed) estimate of upper bound */
580  left = right >> 1;
581  } else {
582  left = 0;
583  }
584 
585  /* bisection root-finding method */
586  while (left + 1 < right) {
587  mid = (left + right) / 2;
588  if (__kmp_pow<UT>(x, mid) > target) {
589  left = mid;
590  } else {
591  right = mid;
592  }
593  } // while
594  cross = right;
595  }
596  /* assert sanity of computed crossover point */
597  KMP_ASSERT(cross && __kmp_pow<UT>(x, cross - 1) > target &&
598  __kmp_pow<UT>(x, cross) <= target);
599 
600  /* save the crossover point in thread private dispatch structure */
601  pr->u.p.parm2 = cross;
602 
603 // C75803
604 #if ((KMP_OS_LINUX || KMP_OS_WINDOWS) && KMP_ARCH_X86) && (!defined(KMP_I8))
605 #define GUIDED_ANALYTICAL_WORKAROUND (*(DBL *)&pr->u.p.parm3)
606 #else
607 #define GUIDED_ANALYTICAL_WORKAROUND (x)
608 #endif
609  /* dynamic-style scheduling offset */
610  pr->u.p.count = tc - __kmp_dispatch_guided_remaining(
611  tc, GUIDED_ANALYTICAL_WORKAROUND, cross) -
612  cross * chunk;
613 #if KMP_USE_X87CONTROL
614  // restore FPCW
615  _control87(oldFpcw, _MCW_PC);
616 #endif
617  } // if
618  } else {
619  KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to "
620  "kmp_sch_static_greedy\n",
621  gtid));
622  schedule = kmp_sch_static_greedy;
623  /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */
624  pr->u.p.parm1 = tc;
625  } // if
626  } // case
627  break;
628  case kmp_sch_static_greedy:
629  KD_TRACE(
630  100,
631  ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n",
632  gtid));
633  pr->u.p.parm1 = (nproc > 1) ? (tc + nproc - 1) / nproc : tc;
634  break;
635  case kmp_sch_static_chunked:
636  case kmp_sch_dynamic_chunked:
637  if (pr->u.p.parm1 <= 0) {
638  pr->u.p.parm1 = KMP_DEFAULT_CHUNK;
639  }
640  KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d "
641  "kmp_sch_static_chunked/kmp_sch_dynamic_chunked cases\n",
642  gtid));
643  break;
644  case kmp_sch_trapezoidal: {
645  /* TSS: trapezoid self-scheduling, minimum chunk_size = parm1 */
646 
647  T parm1, parm2, parm3, parm4;
648  KD_TRACE(100,
649  ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_trapezoidal case\n",
650  gtid));
651 
652  parm1 = chunk;
653 
654  /* F : size of the first cycle */
655  parm2 = (tc / (2 * nproc));
656 
657  if (parm2 < 1) {
658  parm2 = 1;
659  }
660 
661  /* L : size of the last cycle. Make sure the last cycle is not larger
662  than the first cycle. */
663  if (parm1 < 1) {
664  parm1 = 1;
665  } else if (parm1 > parm2) {
666  parm1 = parm2;
667  }
668 
669  /* N : number of cycles */
670  parm3 = (parm2 + parm1);
671  parm3 = (2 * tc + parm3 - 1) / parm3;
672 
673  if (parm3 < 2) {
674  parm3 = 2;
675  }
676 
677  /* sigma : decreasing incr of the trapezoid */
678  parm4 = (parm3 - 1);
679  parm4 = (parm2 - parm1) / parm4;
680 
681  // pointless check, because parm4 >= 0 always
682  // if ( parm4 < 0 ) {
683  // parm4 = 0;
684  //}
685 
686  pr->u.p.parm1 = parm1;
687  pr->u.p.parm2 = parm2;
688  pr->u.p.parm3 = parm3;
689  pr->u.p.parm4 = parm4;
690  } // case
691  break;
692 
693  default: {
694  __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message
695  KMP_HNT(GetNewerLibrary), // Hint
696  __kmp_msg_null // Variadic argument list terminator
697  );
698  } break;
699  } // switch
700  pr->schedule = schedule;
701 }
702 
703 #if KMP_USE_HIER_SCHED
704 template <typename T>
705 inline void __kmp_dispatch_init_hier_runtime(ident_t *loc, T lb, T ub,
706  typename traits_t<T>::signed_t st);
707 template <>
708 inline void
709 __kmp_dispatch_init_hier_runtime<kmp_int32>(ident_t *loc, kmp_int32 lb,
710  kmp_int32 ub, kmp_int32 st) {
711  __kmp_dispatch_init_hierarchy<kmp_int32>(
712  loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
713  __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st);
714 }
715 template <>
716 inline void
717 __kmp_dispatch_init_hier_runtime<kmp_uint32>(ident_t *loc, kmp_uint32 lb,
718  kmp_uint32 ub, kmp_int32 st) {
719  __kmp_dispatch_init_hierarchy<kmp_uint32>(
720  loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
721  __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st);
722 }
723 template <>
724 inline void
725 __kmp_dispatch_init_hier_runtime<kmp_int64>(ident_t *loc, kmp_int64 lb,
726  kmp_int64 ub, kmp_int64 st) {
727  __kmp_dispatch_init_hierarchy<kmp_int64>(
728  loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
729  __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st);
730 }
731 template <>
732 inline void
733 __kmp_dispatch_init_hier_runtime<kmp_uint64>(ident_t *loc, kmp_uint64 lb,
734  kmp_uint64 ub, kmp_int64 st) {
735  __kmp_dispatch_init_hierarchy<kmp_uint64>(
736  loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
737  __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st);
738 }
739 
740 // free all the hierarchy scheduling memory associated with the team
741 void __kmp_dispatch_free_hierarchies(kmp_team_t *team) {
742  int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
743  for (int i = 0; i < num_disp_buff; ++i) {
744  // type does not matter here so use kmp_int32
745  auto sh =
746  reinterpret_cast<dispatch_shared_info_template<kmp_int32> volatile *>(
747  &team->t.t_disp_buffer[i]);
748  if (sh->hier) {
749  sh->hier->deallocate();
750  __kmp_free(sh->hier);
751  }
752  }
753 }
754 #endif
755 
756 // UT - unsigned flavor of T, ST - signed flavor of T,
757 // DBL - double if sizeof(T)==4, or long double if sizeof(T)==8
758 template <typename T>
759 static void
760 __kmp_dispatch_init(ident_t *loc, int gtid, enum sched_type schedule, T lb,
761  T ub, typename traits_t<T>::signed_t st,
762  typename traits_t<T>::signed_t chunk, int push_ws) {
763  typedef typename traits_t<T>::unsigned_t UT;
764 
765  int active;
766  kmp_info_t *th;
767  kmp_team_t *team;
768  kmp_uint32 my_buffer_index;
769  dispatch_private_info_template<T> *pr;
770  dispatch_shared_info_template<T> volatile *sh;
771 
772  KMP_BUILD_ASSERT(sizeof(dispatch_private_info_template<T>) ==
773  sizeof(dispatch_private_info));
774  KMP_BUILD_ASSERT(sizeof(dispatch_shared_info_template<UT>) ==
775  sizeof(dispatch_shared_info));
776 
777  if (!TCR_4(__kmp_init_parallel))
778  __kmp_parallel_initialize();
779 
780  __kmp_resume_if_soft_paused();
781 
782 #if INCLUDE_SSC_MARKS
783  SSC_MARK_DISPATCH_INIT();
784 #endif
785 #ifdef KMP_DEBUG
786  typedef typename traits_t<T>::signed_t ST;
787  {
788  char *buff;
789  // create format specifiers before the debug output
790  buff = __kmp_str_format("__kmp_dispatch_init: T#%%d called: schedule:%%d "
791  "chunk:%%%s lb:%%%s ub:%%%s st:%%%s\n",
792  traits_t<ST>::spec, traits_t<T>::spec,
793  traits_t<T>::spec, traits_t<ST>::spec);
794  KD_TRACE(10, (buff, gtid, schedule, chunk, lb, ub, st));
795  __kmp_str_free(&buff);
796  }
797 #endif
798  /* setup data */
799  th = __kmp_threads[gtid];
800  team = th->th.th_team;
801  active = !team->t.t_serialized;
802  th->th.th_ident = loc;
803 
804  // Any half-decent optimizer will remove this test when the blocks are empty
805  // since the macros expand to nothing
806  // when statistics are disabled.
807  if (schedule == __kmp_static) {
808  KMP_COUNT_BLOCK(OMP_LOOP_STATIC);
809  } else {
810  KMP_COUNT_BLOCK(OMP_LOOP_DYNAMIC);
811  }
812 
813 #if KMP_USE_HIER_SCHED
814  // Initialize the scheduling hierarchy if requested in OMP_SCHEDULE envirable
815  // Hierarchical scheduling does not work with ordered, so if ordered is
816  // detected, then revert back to threaded scheduling.
817  bool ordered;
818  enum sched_type my_sched = schedule;
819  my_buffer_index = th->th.th_dispatch->th_disp_index;
820  pr = reinterpret_cast<dispatch_private_info_template<T> *>(
821  &th->th.th_dispatch
822  ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
823  my_sched = SCHEDULE_WITHOUT_MODIFIERS(my_sched);
824  if ((my_sched >= kmp_nm_lower) && (my_sched < kmp_nm_upper))
825  my_sched =
826  (enum sched_type)(((int)my_sched) - (kmp_nm_lower - kmp_sch_lower));
827  ordered = (kmp_ord_lower & my_sched);
828  if (pr->flags.use_hier) {
829  if (ordered) {
830  KD_TRACE(100, ("__kmp_dispatch_init: T#%d ordered loop detected. "
831  "Disabling hierarchical scheduling.\n",
832  gtid));
833  pr->flags.use_hier = FALSE;
834  }
835  }
836  if (schedule == kmp_sch_runtime && __kmp_hier_scheds.size > 0) {
837  // Don't use hierarchical for ordered parallel loops and don't
838  // use the runtime hierarchy if one was specified in the program
839  if (!ordered && !pr->flags.use_hier)
840  __kmp_dispatch_init_hier_runtime<T>(loc, lb, ub, st);
841  }
842 #endif // KMP_USE_HIER_SCHED
843 
844 #if USE_ITT_BUILD
845  kmp_uint64 cur_chunk = chunk;
846  int itt_need_metadata_reporting =
847  __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
848  KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
849  team->t.t_active_level == 1;
850 #endif
851  if (!active) {
852  pr = reinterpret_cast<dispatch_private_info_template<T> *>(
853  th->th.th_dispatch->th_disp_buffer); /* top of the stack */
854  } else {
855  KMP_DEBUG_ASSERT(th->th.th_dispatch ==
856  &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
857 
858  my_buffer_index = th->th.th_dispatch->th_disp_index++;
859 
860  /* What happens when number of threads changes, need to resize buffer? */
861  pr = reinterpret_cast<dispatch_private_info_template<T> *>(
862  &th->th.th_dispatch
863  ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
864  sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
865  &team->t.t_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
866  KD_TRACE(10, ("__kmp_dispatch_init: T#%d my_buffer_index:%d\n", gtid,
867  my_buffer_index));
868  }
869 
870  __kmp_dispatch_init_algorithm(loc, gtid, pr, schedule, lb, ub, st,
871 #if USE_ITT_BUILD
872  &cur_chunk,
873 #endif
874  chunk, (T)th->th.th_team_nproc,
875  (T)th->th.th_info.ds.ds_tid);
876  if (active) {
877  if (pr->flags.ordered == 0) {
878  th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo_error;
879  th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo_error;
880  } else {
881  th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo<UT>;
882  th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo<UT>;
883  }
884  }
885 
886  if (active) {
887  /* The name of this buffer should be my_buffer_index when it's free to use
888  * it */
889 
890  KD_TRACE(100, ("__kmp_dispatch_init: T#%d before wait: my_buffer_index:%d "
891  "sh->buffer_index:%d\n",
892  gtid, my_buffer_index, sh->buffer_index));
893  __kmp_wait<kmp_uint32>(&sh->buffer_index, my_buffer_index,
894  __kmp_eq<kmp_uint32> USE_ITT_BUILD_ARG(NULL));
895  // Note: KMP_WAIT() cannot be used there: buffer index and
896  // my_buffer_index are *always* 32-bit integers.
897  KMP_MB(); /* is this necessary? */
898  KD_TRACE(100, ("__kmp_dispatch_init: T#%d after wait: my_buffer_index:%d "
899  "sh->buffer_index:%d\n",
900  gtid, my_buffer_index, sh->buffer_index));
901 
902  th->th.th_dispatch->th_dispatch_pr_current = (dispatch_private_info_t *)pr;
903  th->th.th_dispatch->th_dispatch_sh_current =
904  CCAST(dispatch_shared_info_t *, (volatile dispatch_shared_info_t *)sh);
905 #if USE_ITT_BUILD
906  if (pr->flags.ordered) {
907  __kmp_itt_ordered_init(gtid);
908  }
909  // Report loop metadata
910  if (itt_need_metadata_reporting) {
911  // Only report metadata by master of active team at level 1
912  kmp_uint64 schedtype = 0;
913  switch (schedule) {
914  case kmp_sch_static_chunked:
915  case kmp_sch_static_balanced: // Chunk is calculated in the switch above
916  break;
917  case kmp_sch_static_greedy:
918  cur_chunk = pr->u.p.parm1;
919  break;
920  case kmp_sch_dynamic_chunked:
921  schedtype = 1;
922  break;
923  case kmp_sch_guided_iterative_chunked:
924  case kmp_sch_guided_analytical_chunked:
925  case kmp_sch_guided_simd:
926  schedtype = 2;
927  break;
928  default:
929  // Should we put this case under "static"?
930  // case kmp_sch_static_steal:
931  schedtype = 3;
932  break;
933  }
934  __kmp_itt_metadata_loop(loc, schedtype, pr->u.p.tc, cur_chunk);
935  }
936 #if KMP_USE_HIER_SCHED
937  if (pr->flags.use_hier) {
938  pr->u.p.count = 0;
939  pr->u.p.ub = pr->u.p.lb = pr->u.p.st = pr->u.p.tc = 0;
940  }
941 #endif // KMP_USER_HIER_SCHED
942 #endif /* USE_ITT_BUILD */
943  }
944 
945 #ifdef KMP_DEBUG
946  {
947  char *buff;
948  // create format specifiers before the debug output
949  buff = __kmp_str_format(
950  "__kmp_dispatch_init: T#%%d returning: schedule:%%d ordered:%%%s "
951  "lb:%%%s ub:%%%s"
952  " st:%%%s tc:%%%s count:%%%s\n\tordered_lower:%%%s ordered_upper:%%%s"
953  " parm1:%%%s parm2:%%%s parm3:%%%s parm4:%%%s\n",
954  traits_t<UT>::spec, traits_t<T>::spec, traits_t<T>::spec,
955  traits_t<ST>::spec, traits_t<UT>::spec, traits_t<UT>::spec,
956  traits_t<UT>::spec, traits_t<UT>::spec, traits_t<T>::spec,
957  traits_t<T>::spec, traits_t<T>::spec, traits_t<T>::spec);
958  KD_TRACE(10, (buff, gtid, pr->schedule, pr->flags.ordered, pr->u.p.lb,
959  pr->u.p.ub, pr->u.p.st, pr->u.p.tc, pr->u.p.count,
960  pr->u.p.ordered_lower, pr->u.p.ordered_upper, pr->u.p.parm1,
961  pr->u.p.parm2, pr->u.p.parm3, pr->u.p.parm4));
962  __kmp_str_free(&buff);
963  }
964 #endif
965 #if (KMP_STATIC_STEAL_ENABLED)
966  // It cannot be guaranteed that after execution of a loop with some other
967  // schedule kind all the parm3 variables will contain the same value. Even if
968  // all parm3 will be the same, it still exists a bad case like using 0 and 1
969  // rather than program life-time increment. So the dedicated variable is
970  // required. The 'static_steal_counter' is used.
971  if (schedule == kmp_sch_static_steal) {
972  // Other threads will inspect this variable when searching for a victim.
973  // This is a flag showing that other threads may steal from this thread
974  // since then.
975  volatile T *p = &pr->u.p.static_steal_counter;
976  *p = *p + 1;
977  }
978 #endif // ( KMP_STATIC_STEAL_ENABLED )
979 
980 #if OMPT_SUPPORT && OMPT_OPTIONAL
981  if (ompt_enabled.ompt_callback_work) {
982  ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
983  ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
984  ompt_callbacks.ompt_callback(ompt_callback_work)(
985  ompt_work_loop, ompt_scope_begin, &(team_info->parallel_data),
986  &(task_info->task_data), pr->u.p.tc, OMPT_LOAD_RETURN_ADDRESS(gtid));
987  }
988 #endif
989  KMP_PUSH_PARTITIONED_TIMER(OMP_loop_dynamic);
990 }
991 
992 /* For ordered loops, either __kmp_dispatch_finish() should be called after
993  * every iteration, or __kmp_dispatch_finish_chunk() should be called after
994  * every chunk of iterations. If the ordered section(s) were not executed
995  * for this iteration (or every iteration in this chunk), we need to set the
996  * ordered iteration counters so that the next thread can proceed. */
997 template <typename UT>
998 static void __kmp_dispatch_finish(int gtid, ident_t *loc) {
999  typedef typename traits_t<UT>::signed_t ST;
1000  kmp_info_t *th = __kmp_threads[gtid];
1001 
1002  KD_TRACE(100, ("__kmp_dispatch_finish: T#%d called\n", gtid));
1003  if (!th->th.th_team->t.t_serialized) {
1004 
1005  dispatch_private_info_template<UT> *pr =
1006  reinterpret_cast<dispatch_private_info_template<UT> *>(
1007  th->th.th_dispatch->th_dispatch_pr_current);
1008  dispatch_shared_info_template<UT> volatile *sh =
1009  reinterpret_cast<dispatch_shared_info_template<UT> volatile *>(
1010  th->th.th_dispatch->th_dispatch_sh_current);
1011  KMP_DEBUG_ASSERT(pr);
1012  KMP_DEBUG_ASSERT(sh);
1013  KMP_DEBUG_ASSERT(th->th.th_dispatch ==
1014  &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
1015 
1016  if (pr->ordered_bumped) {
1017  KD_TRACE(
1018  1000,
1019  ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n",
1020  gtid));
1021  pr->ordered_bumped = 0;
1022  } else {
1023  UT lower = pr->u.p.ordered_lower;
1024 
1025 #ifdef KMP_DEBUG
1026  {
1027  char *buff;
1028  // create format specifiers before the debug output
1029  buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d before wait: "
1030  "ordered_iteration:%%%s lower:%%%s\n",
1031  traits_t<UT>::spec, traits_t<UT>::spec);
1032  KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
1033  __kmp_str_free(&buff);
1034  }
1035 #endif
1036 
1037  __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
1038  __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));
1039  KMP_MB(); /* is this necessary? */
1040 #ifdef KMP_DEBUG
1041  {
1042  char *buff;
1043  // create format specifiers before the debug output
1044  buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d after wait: "
1045  "ordered_iteration:%%%s lower:%%%s\n",
1046  traits_t<UT>::spec, traits_t<UT>::spec);
1047  KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
1048  __kmp_str_free(&buff);
1049  }
1050 #endif
1051 
1052  test_then_inc<ST>((volatile ST *)&sh->u.s.ordered_iteration);
1053  } // if
1054  } // if
1055  KD_TRACE(100, ("__kmp_dispatch_finish: T#%d returned\n", gtid));
1056 }
1057 
1058 #ifdef KMP_GOMP_COMPAT
1059 
1060 template <typename UT>
1061 static void __kmp_dispatch_finish_chunk(int gtid, ident_t *loc) {
1062  typedef typename traits_t<UT>::signed_t ST;
1063  kmp_info_t *th = __kmp_threads[gtid];
1064 
1065  KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d called\n", gtid));
1066  if (!th->th.th_team->t.t_serialized) {
1067  // int cid;
1068  dispatch_private_info_template<UT> *pr =
1069  reinterpret_cast<dispatch_private_info_template<UT> *>(
1070  th->th.th_dispatch->th_dispatch_pr_current);
1071  dispatch_shared_info_template<UT> volatile *sh =
1072  reinterpret_cast<dispatch_shared_info_template<UT> volatile *>(
1073  th->th.th_dispatch->th_dispatch_sh_current);
1074  KMP_DEBUG_ASSERT(pr);
1075  KMP_DEBUG_ASSERT(sh);
1076  KMP_DEBUG_ASSERT(th->th.th_dispatch ==
1077  &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
1078 
1079  // for (cid = 0; cid < KMP_MAX_ORDERED; ++cid) {
1080  UT lower = pr->u.p.ordered_lower;
1081  UT upper = pr->u.p.ordered_upper;
1082  UT inc = upper - lower + 1;
1083 
1084  if (pr->ordered_bumped == inc) {
1085  KD_TRACE(
1086  1000,
1087  ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n",
1088  gtid));
1089  pr->ordered_bumped = 0;
1090  } else {
1091  inc -= pr->ordered_bumped;
1092 
1093 #ifdef KMP_DEBUG
1094  {
1095  char *buff;
1096  // create format specifiers before the debug output
1097  buff = __kmp_str_format(
1098  "__kmp_dispatch_finish_chunk: T#%%d before wait: "
1099  "ordered_iteration:%%%s lower:%%%s upper:%%%s\n",
1100  traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec);
1101  KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower, upper));
1102  __kmp_str_free(&buff);
1103  }
1104 #endif
1105 
1106  __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
1107  __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));
1108 
1109  KMP_MB(); /* is this necessary? */
1110  KD_TRACE(1000, ("__kmp_dispatch_finish_chunk: T#%d resetting "
1111  "ordered_bumped to zero\n",
1112  gtid));
1113  pr->ordered_bumped = 0;
1115 #ifdef KMP_DEBUG
1116  {
1117  char *buff;
1118  // create format specifiers before the debug output
1119  buff = __kmp_str_format(
1120  "__kmp_dispatch_finish_chunk: T#%%d after wait: "
1121  "ordered_iteration:%%%s inc:%%%s lower:%%%s upper:%%%s\n",
1122  traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec,
1123  traits_t<UT>::spec);
1124  KD_TRACE(1000,
1125  (buff, gtid, sh->u.s.ordered_iteration, inc, lower, upper));
1126  __kmp_str_free(&buff);
1127  }
1128 #endif
1129 
1130  test_then_add<ST>((volatile ST *)&sh->u.s.ordered_iteration, inc);
1131  }
1132  // }
1133  }
1134  KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d returned\n", gtid));
1135 }
1136 
1137 #endif /* KMP_GOMP_COMPAT */
1138 
1139 template <typename T>
1140 int __kmp_dispatch_next_algorithm(int gtid,
1141  dispatch_private_info_template<T> *pr,
1142  dispatch_shared_info_template<T> volatile *sh,
1143  kmp_int32 *p_last, T *p_lb, T *p_ub,
1144  typename traits_t<T>::signed_t *p_st, T nproc,
1145  T tid) {
1146  typedef typename traits_t<T>::unsigned_t UT;
1147  typedef typename traits_t<T>::signed_t ST;
1148  typedef typename traits_t<T>::floating_t DBL;
1149  int status = 0;
1150  kmp_int32 last = 0;
1151  T start;
1152  ST incr;
1153  UT limit, trip, init;
1154  kmp_info_t *th = __kmp_threads[gtid];
1155  kmp_team_t *team = th->th.th_team;
1156 
1157  KMP_DEBUG_ASSERT(th->th.th_dispatch ==
1158  &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
1159  KMP_DEBUG_ASSERT(pr);
1160  KMP_DEBUG_ASSERT(sh);
1161  KMP_DEBUG_ASSERT(tid >= 0 && tid < nproc);
1162 #ifdef KMP_DEBUG
1163  {
1164  char *buff;
1165  // create format specifiers before the debug output
1166  buff =
1167  __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d called pr:%%p "
1168  "sh:%%p nproc:%%%s tid:%%%s\n",
1169  traits_t<T>::spec, traits_t<T>::spec);
1170  KD_TRACE(10, (buff, gtid, pr, sh, nproc, tid));
1171  __kmp_str_free(&buff);
1172  }
1173 #endif
1174 
1175  // zero trip count
1176  if (pr->u.p.tc == 0) {
1177  KD_TRACE(10,
1178  ("__kmp_dispatch_next_algorithm: T#%d early exit trip count is "
1179  "zero status:%d\n",
1180  gtid, status));
1181  return 0;
1182  }
1183 
1184  switch (pr->schedule) {
1185 #if (KMP_STATIC_STEAL_ENABLED)
1186  case kmp_sch_static_steal: {
1187  T chunk = pr->u.p.parm1;
1188 
1189  KD_TRACE(100,
1190  ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_steal case\n",
1191  gtid));
1192 
1193  trip = pr->u.p.tc - 1;
1194 
1195  if (traits_t<T>::type_size > 4) {
1196  // use lock for 8-byte and CAS for 4-byte induction
1197  // variable. TODO (optional): check and use 16-byte CAS
1198  kmp_lock_t *lck = th->th.th_dispatch->th_steal_lock;
1199  KMP_DEBUG_ASSERT(lck != NULL);
1200  if (pr->u.p.count < (UT)pr->u.p.ub) {
1201  __kmp_acquire_lock(lck, gtid);
1202  // try to get own chunk of iterations
1203  init = (pr->u.p.count)++;
1204  status = (init < (UT)pr->u.p.ub);
1205  __kmp_release_lock(lck, gtid);
1206  } else {
1207  status = 0; // no own chunks
1208  }
1209  if (!status) { // try to steal
1210  kmp_info_t **other_threads = team->t.t_threads;
1211  int while_limit = pr->u.p.parm3;
1212  int while_index = 0;
1213  // TODO: algorithm of searching for a victim
1214  // should be cleaned up and measured
1215  while ((!status) && (while_limit != ++while_index)) {
1216  T remaining;
1217  T victimIdx = pr->u.p.parm4;
1218  T oldVictimIdx = victimIdx ? victimIdx - 1 : nproc - 1;
1219  dispatch_private_info_template<T> *victim =
1220  reinterpret_cast<dispatch_private_info_template<T> *>(
1221  other_threads[victimIdx]
1222  ->th.th_dispatch->th_dispatch_pr_current);
1223  while ((victim == NULL || victim == pr ||
1224  (*(volatile T *)&victim->u.p.static_steal_counter !=
1225  *(volatile T *)&pr->u.p.static_steal_counter)) &&
1226  oldVictimIdx != victimIdx) {
1227  victimIdx = (victimIdx + 1) % nproc;
1228  victim = reinterpret_cast<dispatch_private_info_template<T> *>(
1229  other_threads[victimIdx]
1230  ->th.th_dispatch->th_dispatch_pr_current);
1231  }
1232  if (!victim || (*(volatile T *)&victim->u.p.static_steal_counter !=
1233  *(volatile T *)&pr->u.p.static_steal_counter)) {
1234  continue; // try once more (nproc attempts in total)
1235  // no victim is ready yet to participate in stealing
1236  // because all victims are still in kmp_init_dispatch
1237  }
1238  if (victim->u.p.count + 2 > (UT)victim->u.p.ub) {
1239  pr->u.p.parm4 = (victimIdx + 1) % nproc; // shift start tid
1240  continue; // not enough chunks to steal, goto next victim
1241  }
1242 
1243  lck = other_threads[victimIdx]->th.th_dispatch->th_steal_lock;
1244  KMP_ASSERT(lck != NULL);
1245  __kmp_acquire_lock(lck, gtid);
1246  limit = victim->u.p.ub; // keep initial ub
1247  if (victim->u.p.count >= limit ||
1248  (remaining = limit - victim->u.p.count) < 2) {
1249  __kmp_release_lock(lck, gtid);
1250  pr->u.p.parm4 = (victimIdx + 1) % nproc; // next victim
1251  continue; // not enough chunks to steal
1252  }
1253  // stealing succeded, reduce victim's ub by 1/4 of undone chunks or
1254  // by 1
1255  if (remaining > 3) {
1256  // steal 1/4 of remaining
1257  KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, remaining >> 2);
1258  init = (victim->u.p.ub -= (remaining >> 2));
1259  } else {
1260  // steal 1 chunk of 2 or 3 remaining
1261  KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, 1);
1262  init = (victim->u.p.ub -= 1);
1263  }
1264  __kmp_release_lock(lck, gtid);
1265 
1266  KMP_DEBUG_ASSERT(init + 1 <= limit);
1267  pr->u.p.parm4 = victimIdx; // remember victim to steal from
1268  status = 1;
1269  while_index = 0;
1270  // now update own count and ub with stolen range but init chunk
1271  __kmp_acquire_lock(th->th.th_dispatch->th_steal_lock, gtid);
1272  pr->u.p.count = init + 1;
1273  pr->u.p.ub = limit;
1274  __kmp_release_lock(th->th.th_dispatch->th_steal_lock, gtid);
1275  } // while (search for victim)
1276  } // if (try to find victim and steal)
1277  } else {
1278  // 4-byte induction variable, use 8-byte CAS for pair (count, ub)
1279  typedef union {
1280  struct {
1281  UT count;
1282  T ub;
1283  } p;
1284  kmp_int64 b;
1285  } union_i4;
1286  // All operations on 'count' or 'ub' must be combined atomically
1287  // together.
1288  {
1289  union_i4 vold, vnew;
1290  vold.b = *(volatile kmp_int64 *)(&pr->u.p.count);
1291  vnew = vold;
1292  vnew.p.count++;
1293  while (!KMP_COMPARE_AND_STORE_ACQ64(
1294  (volatile kmp_int64 *)&pr->u.p.count,
1295  *VOLATILE_CAST(kmp_int64 *) & vold.b,
1296  *VOLATILE_CAST(kmp_int64 *) & vnew.b)) {
1297  KMP_CPU_PAUSE();
1298  vold.b = *(volatile kmp_int64 *)(&pr->u.p.count);
1299  vnew = vold;
1300  vnew.p.count++;
1301  }
1302  vnew = vold;
1303  init = vnew.p.count;
1304  status = (init < (UT)vnew.p.ub);
1305  }
1306 
1307  if (!status) {
1308  kmp_info_t **other_threads = team->t.t_threads;
1309  int while_limit = pr->u.p.parm3;
1310  int while_index = 0;
1311 
1312  // TODO: algorithm of searching for a victim
1313  // should be cleaned up and measured
1314  while ((!status) && (while_limit != ++while_index)) {
1315  union_i4 vold, vnew;
1316  kmp_int32 remaining;
1317  T victimIdx = pr->u.p.parm4;
1318  T oldVictimIdx = victimIdx ? victimIdx - 1 : nproc - 1;
1319  dispatch_private_info_template<T> *victim =
1320  reinterpret_cast<dispatch_private_info_template<T> *>(
1321  other_threads[victimIdx]
1322  ->th.th_dispatch->th_dispatch_pr_current);
1323  while ((victim == NULL || victim == pr ||
1324  (*(volatile T *)&victim->u.p.static_steal_counter !=
1325  *(volatile T *)&pr->u.p.static_steal_counter)) &&
1326  oldVictimIdx != victimIdx) {
1327  victimIdx = (victimIdx + 1) % nproc;
1328  victim = reinterpret_cast<dispatch_private_info_template<T> *>(
1329  other_threads[victimIdx]
1330  ->th.th_dispatch->th_dispatch_pr_current);
1331  }
1332  if (!victim || (*(volatile T *)&victim->u.p.static_steal_counter !=
1333  *(volatile T *)&pr->u.p.static_steal_counter)) {
1334  continue; // try once more (nproc attempts in total)
1335  // no victim is ready yet to participate in stealing
1336  // because all victims are still in kmp_init_dispatch
1337  }
1338  pr->u.p.parm4 = victimIdx; // new victim found
1339  while (1) { // CAS loop if victim has enough chunks to steal
1340  vold.b = *(volatile kmp_int64 *)(&victim->u.p.count);
1341  vnew = vold;
1342 
1343  KMP_DEBUG_ASSERT((vnew.p.ub - 1) * (UT)chunk <= trip);
1344  if (vnew.p.count >= (UT)vnew.p.ub ||
1345  (remaining = vnew.p.ub - vnew.p.count) < 2) {
1346  pr->u.p.parm4 = (victimIdx + 1) % nproc; // shift start victim id
1347  break; // not enough chunks to steal, goto next victim
1348  }
1349  if (remaining > 3) {
1350  vnew.p.ub -= (remaining >> 2); // try to steal 1/4 of remaining
1351  } else {
1352  vnew.p.ub -= 1; // steal 1 chunk of 2 or 3 remaining
1353  }
1354  KMP_DEBUG_ASSERT((vnew.p.ub - 1) * (UT)chunk <= trip);
1355  // TODO: Should this be acquire or release?
1356  if (KMP_COMPARE_AND_STORE_ACQ64(
1357  (volatile kmp_int64 *)&victim->u.p.count,
1358  *VOLATILE_CAST(kmp_int64 *) & vold.b,
1359  *VOLATILE_CAST(kmp_int64 *) & vnew.b)) {
1360  // stealing succedded
1361  KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen,
1362  vold.p.ub - vnew.p.ub);
1363  status = 1;
1364  while_index = 0;
1365  // now update own count and ub
1366  init = vnew.p.ub;
1367  vold.p.count = init + 1;
1368 #if KMP_ARCH_X86
1369  KMP_XCHG_FIXED64((volatile kmp_int64 *)(&pr->u.p.count), vold.b);
1370 #else
1371  *(volatile kmp_int64 *)(&pr->u.p.count) = vold.b;
1372 #endif
1373  break;
1374  } // if (check CAS result)
1375  KMP_CPU_PAUSE(); // CAS failed, repeate attempt
1376  } // while (try to steal from particular victim)
1377  } // while (search for victim)
1378  } // if (try to find victim and steal)
1379  } // if (4-byte induction variable)
1380  if (!status) {
1381  *p_lb = 0;
1382  *p_ub = 0;
1383  if (p_st != NULL)
1384  *p_st = 0;
1385  } else {
1386  start = pr->u.p.parm2;
1387  init *= chunk;
1388  limit = chunk + init - 1;
1389  incr = pr->u.p.st;
1390  KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_chunks, 1);
1391 
1392  KMP_DEBUG_ASSERT(init <= trip);
1393  if ((last = (limit >= trip)) != 0)
1394  limit = trip;
1395  if (p_st != NULL)
1396  *p_st = incr;
1397 
1398  if (incr == 1) {
1399  *p_lb = start + init;
1400  *p_ub = start + limit;
1401  } else {
1402  *p_lb = start + init * incr;
1403  *p_ub = start + limit * incr;
1404  }
1405 
1406  if (pr->flags.ordered) {
1407  pr->u.p.ordered_lower = init;
1408  pr->u.p.ordered_upper = limit;
1409  } // if
1410  } // if
1411  break;
1412  } // case
1413 #endif // ( KMP_STATIC_STEAL_ENABLED )
1414  case kmp_sch_static_balanced: {
1415  KD_TRACE(
1416  10,
1417  ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_balanced case\n",
1418  gtid));
1419  /* check if thread has any iteration to do */
1420  if ((status = !pr->u.p.count) != 0) {
1421  pr->u.p.count = 1;
1422  *p_lb = pr->u.p.lb;
1423  *p_ub = pr->u.p.ub;
1424  last = pr->u.p.parm1;
1425  if (p_st != NULL)
1426  *p_st = pr->u.p.st;
1427  } else { /* no iterations to do */
1428  pr->u.p.lb = pr->u.p.ub + pr->u.p.st;
1429  }
1430  } // case
1431  break;
1432  case kmp_sch_static_greedy: /* original code for kmp_sch_static_greedy was
1433  merged here */
1434  case kmp_sch_static_chunked: {
1435  T parm1;
1436 
1437  KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d "
1438  "kmp_sch_static_[affinity|chunked] case\n",
1439  gtid));
1440  parm1 = pr->u.p.parm1;
1441 
1442  trip = pr->u.p.tc - 1;
1443  init = parm1 * (pr->u.p.count + tid);
1444 
1445  if ((status = (init <= trip)) != 0) {
1446  start = pr->u.p.lb;
1447  incr = pr->u.p.st;
1448  limit = parm1 + init - 1;
1449 
1450  if ((last = (limit >= trip)) != 0)
1451  limit = trip;
1452 
1453  if (p_st != NULL)
1454  *p_st = incr;
1455 
1456  pr->u.p.count += nproc;
1457 
1458  if (incr == 1) {
1459  *p_lb = start + init;
1460  *p_ub = start + limit;
1461  } else {
1462  *p_lb = start + init * incr;
1463  *p_ub = start + limit * incr;
1464  }
1465 
1466  if (pr->flags.ordered) {
1467  pr->u.p.ordered_lower = init;
1468  pr->u.p.ordered_upper = limit;
1469  } // if
1470  } // if
1471  } // case
1472  break;
1473 
1474  case kmp_sch_dynamic_chunked: {
1475  T chunk = pr->u.p.parm1;
1476 
1477  KD_TRACE(
1478  100,
1479  ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_dynamic_chunked case\n",
1480  gtid));
1481 
1482  init = chunk * test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration);
1483  trip = pr->u.p.tc - 1;
1484 
1485  if ((status = (init <= trip)) == 0) {
1486  *p_lb = 0;
1487  *p_ub = 0;
1488  if (p_st != NULL)
1489  *p_st = 0;
1490  } else {
1491  start = pr->u.p.lb;
1492  limit = chunk + init - 1;
1493  incr = pr->u.p.st;
1494 
1495  if ((last = (limit >= trip)) != 0)
1496  limit = trip;
1497 
1498  if (p_st != NULL)
1499  *p_st = incr;
1500 
1501  if (incr == 1) {
1502  *p_lb = start + init;
1503  *p_ub = start + limit;
1504  } else {
1505  *p_lb = start + init * incr;
1506  *p_ub = start + limit * incr;
1507  }
1508 
1509  if (pr->flags.ordered) {
1510  pr->u.p.ordered_lower = init;
1511  pr->u.p.ordered_upper = limit;
1512  } // if
1513  } // if
1514  } // case
1515  break;
1516 
1517  case kmp_sch_guided_iterative_chunked: {
1518  T chunkspec = pr->u.p.parm1;
1519  KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_chunked "
1520  "iterative case\n",
1521  gtid));
1522  trip = pr->u.p.tc;
1523  // Start atomic part of calculations
1524  while (1) {
1525  ST remaining; // signed, because can be < 0
1526  init = sh->u.s.iteration; // shared value
1527  remaining = trip - init;
1528  if (remaining <= 0) { // AC: need to compare with 0 first
1529  // nothing to do, don't try atomic op
1530  status = 0;
1531  break;
1532  }
1533  if ((T)remaining <
1534  pr->u.p.parm2) { // compare with K*nproc*(chunk+1), K=2 by default
1535  // use dynamic-style shcedule
1536  // atomically increment iterations, get old value
1537  init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1538  (ST)chunkspec);
1539  remaining = trip - init;
1540  if (remaining <= 0) {
1541  status = 0; // all iterations got by other threads
1542  } else {
1543  // got some iterations to work on
1544  status = 1;
1545  if ((T)remaining > chunkspec) {
1546  limit = init + chunkspec - 1;
1547  } else {
1548  last = 1; // the last chunk
1549  limit = init + remaining - 1;
1550  } // if
1551  } // if
1552  break;
1553  } // if
1554  limit = init +
1555  (UT)(remaining * *(double *)&pr->u.p.parm3); // divide by K*nproc
1556  if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1557  (ST)init, (ST)limit)) {
1558  // CAS was successful, chunk obtained
1559  status = 1;
1560  --limit;
1561  break;
1562  } // if
1563  } // while
1564  if (status != 0) {
1565  start = pr->u.p.lb;
1566  incr = pr->u.p.st;
1567  if (p_st != NULL)
1568  *p_st = incr;
1569  *p_lb = start + init * incr;
1570  *p_ub = start + limit * incr;
1571  if (pr->flags.ordered) {
1572  pr->u.p.ordered_lower = init;
1573  pr->u.p.ordered_upper = limit;
1574  } // if
1575  } else {
1576  *p_lb = 0;
1577  *p_ub = 0;
1578  if (p_st != NULL)
1579  *p_st = 0;
1580  } // if
1581  } // case
1582  break;
1583 
1584  case kmp_sch_guided_simd: {
1585  // same as iterative but curr-chunk adjusted to be multiple of given
1586  // chunk
1587  T chunk = pr->u.p.parm1;
1588  KD_TRACE(100,
1589  ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_simd case\n",
1590  gtid));
1591  trip = pr->u.p.tc;
1592  // Start atomic part of calculations
1593  while (1) {
1594  ST remaining; // signed, because can be < 0
1595  init = sh->u.s.iteration; // shared value
1596  remaining = trip - init;
1597  if (remaining <= 0) { // AC: need to compare with 0 first
1598  status = 0; // nothing to do, don't try atomic op
1599  break;
1600  }
1601  KMP_DEBUG_ASSERT(init % chunk == 0);
1602  // compare with K*nproc*(chunk+1), K=2 by default
1603  if ((T)remaining < pr->u.p.parm2) {
1604  // use dynamic-style shcedule
1605  // atomically increment iterations, get old value
1606  init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1607  (ST)chunk);
1608  remaining = trip - init;
1609  if (remaining <= 0) {
1610  status = 0; // all iterations got by other threads
1611  } else {
1612  // got some iterations to work on
1613  status = 1;
1614  if ((T)remaining > chunk) {
1615  limit = init + chunk - 1;
1616  } else {
1617  last = 1; // the last chunk
1618  limit = init + remaining - 1;
1619  } // if
1620  } // if
1621  break;
1622  } // if
1623  // divide by K*nproc
1624  UT span = remaining * (*(double *)&pr->u.p.parm3);
1625  UT rem = span % chunk;
1626  if (rem) // adjust so that span%chunk == 0
1627  span += chunk - rem;
1628  limit = init + span;
1629  if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1630  (ST)init, (ST)limit)) {
1631  // CAS was successful, chunk obtained
1632  status = 1;
1633  --limit;
1634  break;
1635  } // if
1636  } // while
1637  if (status != 0) {
1638  start = pr->u.p.lb;
1639  incr = pr->u.p.st;
1640  if (p_st != NULL)
1641  *p_st = incr;
1642  *p_lb = start + init * incr;
1643  *p_ub = start + limit * incr;
1644  if (pr->flags.ordered) {
1645  pr->u.p.ordered_lower = init;
1646  pr->u.p.ordered_upper = limit;
1647  } // if
1648  } else {
1649  *p_lb = 0;
1650  *p_ub = 0;
1651  if (p_st != NULL)
1652  *p_st = 0;
1653  } // if
1654  } // case
1655  break;
1656 
1657  case kmp_sch_guided_analytical_chunked: {
1658  T chunkspec = pr->u.p.parm1;
1659  UT chunkIdx;
1660 #if KMP_USE_X87CONTROL
1661  /* for storing original FPCW value for Windows* OS on
1662  IA-32 architecture 8-byte version */
1663  unsigned int oldFpcw;
1664  unsigned int fpcwSet = 0;
1665 #endif
1666  KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d "
1667  "kmp_sch_guided_analytical_chunked case\n",
1668  gtid));
1669 
1670  trip = pr->u.p.tc;
1671 
1672  KMP_DEBUG_ASSERT(nproc > 1);
1673  KMP_DEBUG_ASSERT((2UL * chunkspec + 1) * (UT)nproc < trip);
1674 
1675  while (1) { /* this while loop is a safeguard against unexpected zero
1676  chunk sizes */
1677  chunkIdx = test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration);
1678  if (chunkIdx >= (UT)pr->u.p.parm2) {
1679  --trip;
1680  /* use dynamic-style scheduling */
1681  init = chunkIdx * chunkspec + pr->u.p.count;
1682  /* need to verify init > 0 in case of overflow in the above
1683  * calculation */
1684  if ((status = (init > 0 && init <= trip)) != 0) {
1685  limit = init + chunkspec - 1;
1686 
1687  if ((last = (limit >= trip)) != 0)
1688  limit = trip;
1689  }
1690  break;
1691  } else {
1692 /* use exponential-style scheduling */
1693 /* The following check is to workaround the lack of long double precision on
1694  Windows* OS.
1695  This check works around the possible effect that init != 0 for chunkIdx == 0.
1696  */
1697 #if KMP_USE_X87CONTROL
1698  /* If we haven't already done so, save original
1699  FPCW and set precision to 64-bit, as Windows* OS
1700  on IA-32 architecture defaults to 53-bit */
1701  if (!fpcwSet) {
1702  oldFpcw = _control87(0, 0);
1703  _control87(_PC_64, _MCW_PC);
1704  fpcwSet = 0x30000;
1705  }
1706 #endif
1707  if (chunkIdx) {
1708  init = __kmp_dispatch_guided_remaining<T>(
1709  trip, *(DBL *)&pr->u.p.parm3, chunkIdx);
1710  KMP_DEBUG_ASSERT(init);
1711  init = trip - init;
1712  } else
1713  init = 0;
1714  limit = trip - __kmp_dispatch_guided_remaining<T>(
1715  trip, *(DBL *)&pr->u.p.parm3, chunkIdx + 1);
1716  KMP_ASSERT(init <= limit);
1717  if (init < limit) {
1718  KMP_DEBUG_ASSERT(limit <= trip);
1719  --limit;
1720  status = 1;
1721  break;
1722  } // if
1723  } // if
1724  } // while (1)
1725 #if KMP_USE_X87CONTROL
1726  /* restore FPCW if necessary
1727  AC: check fpcwSet flag first because oldFpcw can be uninitialized here
1728  */
1729  if (fpcwSet && (oldFpcw & fpcwSet))
1730  _control87(oldFpcw, _MCW_PC);
1731 #endif
1732  if (status != 0) {
1733  start = pr->u.p.lb;
1734  incr = pr->u.p.st;
1735  if (p_st != NULL)
1736  *p_st = incr;
1737  *p_lb = start + init * incr;
1738  *p_ub = start + limit * incr;
1739  if (pr->flags.ordered) {
1740  pr->u.p.ordered_lower = init;
1741  pr->u.p.ordered_upper = limit;
1742  }
1743  } else {
1744  *p_lb = 0;
1745  *p_ub = 0;
1746  if (p_st != NULL)
1747  *p_st = 0;
1748  }
1749  } // case
1750  break;
1751 
1752  case kmp_sch_trapezoidal: {
1753  UT index;
1754  T parm2 = pr->u.p.parm2;
1755  T parm3 = pr->u.p.parm3;
1756  T parm4 = pr->u.p.parm4;
1757  KD_TRACE(100,
1758  ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_trapezoidal case\n",
1759  gtid));
1760 
1761  index = test_then_inc<ST>((volatile ST *)&sh->u.s.iteration);
1762 
1763  init = (index * ((2 * parm2) - (index - 1) * parm4)) / 2;
1764  trip = pr->u.p.tc - 1;
1765 
1766  if ((status = ((T)index < parm3 && init <= trip)) == 0) {
1767  *p_lb = 0;
1768  *p_ub = 0;
1769  if (p_st != NULL)
1770  *p_st = 0;
1771  } else {
1772  start = pr->u.p.lb;
1773  limit = ((index + 1) * (2 * parm2 - index * parm4)) / 2 - 1;
1774  incr = pr->u.p.st;
1775 
1776  if ((last = (limit >= trip)) != 0)
1777  limit = trip;
1778 
1779  if (p_st != NULL)
1780  *p_st = incr;
1781 
1782  if (incr == 1) {
1783  *p_lb = start + init;
1784  *p_ub = start + limit;
1785  } else {
1786  *p_lb = start + init * incr;
1787  *p_ub = start + limit * incr;
1788  }
1789 
1790  if (pr->flags.ordered) {
1791  pr->u.p.ordered_lower = init;
1792  pr->u.p.ordered_upper = limit;
1793  } // if
1794  } // if
1795  } // case
1796  break;
1797  default: {
1798  status = 0; // to avoid complaints on uninitialized variable use
1799  __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message
1800  KMP_HNT(GetNewerLibrary), // Hint
1801  __kmp_msg_null // Variadic argument list terminator
1802  );
1803  } break;
1804  } // switch
1805  if (p_last)
1806  *p_last = last;
1807 #ifdef KMP_DEBUG
1808  if (pr->flags.ordered) {
1809  char *buff;
1810  // create format specifiers before the debug output
1811  buff = __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d "
1812  "ordered_lower:%%%s ordered_upper:%%%s\n",
1813  traits_t<UT>::spec, traits_t<UT>::spec);
1814  KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower, pr->u.p.ordered_upper));
1815  __kmp_str_free(&buff);
1816  }
1817  {
1818  char *buff;
1819  // create format specifiers before the debug output
1820  buff = __kmp_str_format(
1821  "__kmp_dispatch_next_algorithm: T#%%d exit status:%%d p_last:%%d "
1822  "p_lb:%%%s p_ub:%%%s p_st:%%%s\n",
1823  traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
1824  KD_TRACE(10, (buff, gtid, status, *p_last, *p_lb, *p_ub, *p_st));
1825  __kmp_str_free(&buff);
1826  }
1827 #endif
1828  return status;
1829 }
1830 
1831 /* Define a macro for exiting __kmp_dispatch_next(). If status is 0 (no more
1832  work), then tell OMPT the loop is over. In some cases kmp_dispatch_fini()
1833  is not called. */
1834 #if OMPT_SUPPORT && OMPT_OPTIONAL
1835 #define OMPT_LOOP_END \
1836  if (status == 0) { \
1837  if (ompt_enabled.ompt_callback_work) { \
1838  ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); \
1839  ompt_task_info_t *task_info = __ompt_get_task_info_object(0); \
1840  ompt_callbacks.ompt_callback(ompt_callback_work)( \
1841  ompt_work_loop, ompt_scope_end, &(team_info->parallel_data), \
1842  &(task_info->task_data), 0, codeptr); \
1843  } \
1844  }
1845 // TODO: implement count
1846 #else
1847 #define OMPT_LOOP_END // no-op
1848 #endif
1849 
1850 #if KMP_STATS_ENABLED
1851 #define KMP_STATS_LOOP_END \
1852  { \
1853  kmp_int64 u, l, t, i; \
1854  l = (kmp_int64)(*p_lb); \
1855  u = (kmp_int64)(*p_ub); \
1856  i = (kmp_int64)(pr->u.p.st); \
1857  if (status == 0) { \
1858  t = 0; \
1859  KMP_POP_PARTITIONED_TIMER(); \
1860  } else if (i == 1) { \
1861  if (u >= l) \
1862  t = u - l + 1; \
1863  else \
1864  t = 0; \
1865  } else if (i < 0) { \
1866  if (l >= u) \
1867  t = (l - u) / (-i) + 1; \
1868  else \
1869  t = 0; \
1870  } else { \
1871  if (u >= l) \
1872  t = (u - l) / i + 1; \
1873  else \
1874  t = 0; \
1875  } \
1876  KMP_COUNT_VALUE(OMP_loop_dynamic_iterations, t); \
1877  }
1878 #else
1879 #define KMP_STATS_LOOP_END /* Nothing */
1880 #endif
1881 
1882 template <typename T>
1883 static int __kmp_dispatch_next(ident_t *loc, int gtid, kmp_int32 *p_last,
1884  T *p_lb, T *p_ub,
1885  typename traits_t<T>::signed_t *p_st
1886 #if OMPT_SUPPORT && OMPT_OPTIONAL
1887  ,
1888  void *codeptr
1889 #endif
1890  ) {
1891 
1892  typedef typename traits_t<T>::unsigned_t UT;
1893  typedef typename traits_t<T>::signed_t ST;
1894  // This is potentially slightly misleading, schedule(runtime) will appear here
1895  // even if the actual runtme schedule is static. (Which points out a
1896  // disadvantage of schedule(runtime): even when static scheduling is used it
1897  // costs more than a compile time choice to use static scheduling would.)
1898  KMP_TIME_PARTITIONED_BLOCK(OMP_loop_dynamic_scheduling);
1899 
1900  int status;
1901  dispatch_private_info_template<T> *pr;
1902  kmp_info_t *th = __kmp_threads[gtid];
1903  kmp_team_t *team = th->th.th_team;
1904 
1905  KMP_DEBUG_ASSERT(p_lb && p_ub && p_st); // AC: these cannot be NULL
1906  KD_TRACE(
1907  1000,
1908  ("__kmp_dispatch_next: T#%d called p_lb:%p p_ub:%p p_st:%p p_last: %p\n",
1909  gtid, p_lb, p_ub, p_st, p_last));
1910 
1911  if (team->t.t_serialized) {
1912  /* NOTE: serialize this dispatch becase we are not at the active level */
1913  pr = reinterpret_cast<dispatch_private_info_template<T> *>(
1914  th->th.th_dispatch->th_disp_buffer); /* top of the stack */
1915  KMP_DEBUG_ASSERT(pr);
1916 
1917  if ((status = (pr->u.p.tc != 0)) == 0) {
1918  *p_lb = 0;
1919  *p_ub = 0;
1920  // if ( p_last != NULL )
1921  // *p_last = 0;
1922  if (p_st != NULL)
1923  *p_st = 0;
1924  if (__kmp_env_consistency_check) {
1925  if (pr->pushed_ws != ct_none) {
1926  pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
1927  }
1928  }
1929  } else if (pr->flags.nomerge) {
1930  kmp_int32 last;
1931  T start;
1932  UT limit, trip, init;
1933  ST incr;
1934  T chunk = pr->u.p.parm1;
1935 
1936  KD_TRACE(100, ("__kmp_dispatch_next: T#%d kmp_sch_dynamic_chunked case\n",
1937  gtid));
1938 
1939  init = chunk * pr->u.p.count++;
1940  trip = pr->u.p.tc - 1;
1941 
1942  if ((status = (init <= trip)) == 0) {
1943  *p_lb = 0;
1944  *p_ub = 0;
1945  // if ( p_last != NULL )
1946  // *p_last = 0;
1947  if (p_st != NULL)
1948  *p_st = 0;
1949  if (__kmp_env_consistency_check) {
1950  if (pr->pushed_ws != ct_none) {
1951  pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
1952  }
1953  }
1954  } else {
1955  start = pr->u.p.lb;
1956  limit = chunk + init - 1;
1957  incr = pr->u.p.st;
1958 
1959  if ((last = (limit >= trip)) != 0) {
1960  limit = trip;
1961 #if KMP_OS_WINDOWS
1962  pr->u.p.last_upper = pr->u.p.ub;
1963 #endif /* KMP_OS_WINDOWS */
1964  }
1965  if (p_last != NULL)
1966  *p_last = last;
1967  if (p_st != NULL)
1968  *p_st = incr;
1969  if (incr == 1) {
1970  *p_lb = start + init;
1971  *p_ub = start + limit;
1972  } else {
1973  *p_lb = start + init * incr;
1974  *p_ub = start + limit * incr;
1975  }
1976 
1977  if (pr->flags.ordered) {
1978  pr->u.p.ordered_lower = init;
1979  pr->u.p.ordered_upper = limit;
1980 #ifdef KMP_DEBUG
1981  {
1982  char *buff;
1983  // create format specifiers before the debug output
1984  buff = __kmp_str_format("__kmp_dispatch_next: T#%%d "
1985  "ordered_lower:%%%s ordered_upper:%%%s\n",
1986  traits_t<UT>::spec, traits_t<UT>::spec);
1987  KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower,
1988  pr->u.p.ordered_upper));
1989  __kmp_str_free(&buff);
1990  }
1991 #endif
1992  } // if
1993  } // if
1994  } else {
1995  pr->u.p.tc = 0;
1996  *p_lb = pr->u.p.lb;
1997  *p_ub = pr->u.p.ub;
1998 #if KMP_OS_WINDOWS
1999  pr->u.p.last_upper = *p_ub;
2000 #endif /* KMP_OS_WINDOWS */
2001  if (p_last != NULL)
2002  *p_last = TRUE;
2003  if (p_st != NULL)
2004  *p_st = pr->u.p.st;
2005  } // if
2006 #ifdef KMP_DEBUG
2007  {
2008  char *buff;
2009  // create format specifiers before the debug output
2010  buff = __kmp_str_format(
2011  "__kmp_dispatch_next: T#%%d serialized case: p_lb:%%%s "
2012  "p_ub:%%%s p_st:%%%s p_last:%%p %%d returning:%%d\n",
2013  traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
2014  KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, *p_st, p_last, *p_last, status));
2015  __kmp_str_free(&buff);
2016  }
2017 #endif
2018 #if INCLUDE_SSC_MARKS
2019  SSC_MARK_DISPATCH_NEXT();
2020 #endif
2021  OMPT_LOOP_END;
2022  KMP_STATS_LOOP_END;
2023  return status;
2024  } else {
2025  kmp_int32 last = 0;
2026  dispatch_shared_info_template<T> volatile *sh;
2027 
2028  KMP_DEBUG_ASSERT(th->th.th_dispatch ==
2029  &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
2030 
2031  pr = reinterpret_cast<dispatch_private_info_template<T> *>(
2032  th->th.th_dispatch->th_dispatch_pr_current);
2033  KMP_DEBUG_ASSERT(pr);
2034  sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
2035  th->th.th_dispatch->th_dispatch_sh_current);
2036  KMP_DEBUG_ASSERT(sh);
2037 
2038 #if KMP_USE_HIER_SCHED
2039  if (pr->flags.use_hier)
2040  status = sh->hier->next(loc, gtid, pr, &last, p_lb, p_ub, p_st);
2041  else
2042 #endif // KMP_USE_HIER_SCHED
2043  status = __kmp_dispatch_next_algorithm<T>(gtid, pr, sh, &last, p_lb, p_ub,
2044  p_st, th->th.th_team_nproc,
2045  th->th.th_info.ds.ds_tid);
2046  // status == 0: no more iterations to execute
2047  if (status == 0) {
2048  UT num_done;
2049 
2050  num_done = test_then_inc<ST>((volatile ST *)&sh->u.s.num_done);
2051 #ifdef KMP_DEBUG
2052  {
2053  char *buff;
2054  // create format specifiers before the debug output
2055  buff = __kmp_str_format(
2056  "__kmp_dispatch_next: T#%%d increment num_done:%%%s\n",
2057  traits_t<UT>::spec);
2058  KD_TRACE(10, (buff, gtid, sh->u.s.num_done));
2059  __kmp_str_free(&buff);
2060  }
2061 #endif
2062 
2063 #if KMP_USE_HIER_SCHED
2064  pr->flags.use_hier = FALSE;
2065 #endif
2066  if ((ST)num_done == th->th.th_team_nproc - 1) {
2067 #if (KMP_STATIC_STEAL_ENABLED)
2068  if (pr->schedule == kmp_sch_static_steal &&
2069  traits_t<T>::type_size > 4) {
2070  int i;
2071  kmp_info_t **other_threads = team->t.t_threads;
2072  // loop complete, safe to destroy locks used for stealing
2073  for (i = 0; i < th->th.th_team_nproc; ++i) {
2074  kmp_lock_t *lck = other_threads[i]->th.th_dispatch->th_steal_lock;
2075  KMP_ASSERT(lck != NULL);
2076  __kmp_destroy_lock(lck);
2077  __kmp_free(lck);
2078  other_threads[i]->th.th_dispatch->th_steal_lock = NULL;
2079  }
2080  }
2081 #endif
2082  /* NOTE: release this buffer to be reused */
2083 
2084  KMP_MB(); /* Flush all pending memory write invalidates. */
2085 
2086  sh->u.s.num_done = 0;
2087  sh->u.s.iteration = 0;
2088 
2089  /* TODO replace with general release procedure? */
2090  if (pr->flags.ordered) {
2091  sh->u.s.ordered_iteration = 0;
2092  }
2093 
2094  KMP_MB(); /* Flush all pending memory write invalidates. */
2095 
2096  sh->buffer_index += __kmp_dispatch_num_buffers;
2097  KD_TRACE(100, ("__kmp_dispatch_next: T#%d change buffer_index:%d\n",
2098  gtid, sh->buffer_index));
2099 
2100  KMP_MB(); /* Flush all pending memory write invalidates. */
2101 
2102  } // if
2103  if (__kmp_env_consistency_check) {
2104  if (pr->pushed_ws != ct_none) {
2105  pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
2106  }
2107  }
2108 
2109  th->th.th_dispatch->th_deo_fcn = NULL;
2110  th->th.th_dispatch->th_dxo_fcn = NULL;
2111  th->th.th_dispatch->th_dispatch_sh_current = NULL;
2112  th->th.th_dispatch->th_dispatch_pr_current = NULL;
2113  } // if (status == 0)
2114 #if KMP_OS_WINDOWS
2115  else if (last) {
2116  pr->u.p.last_upper = pr->u.p.ub;
2117  }
2118 #endif /* KMP_OS_WINDOWS */
2119  if (p_last != NULL && status != 0)
2120  *p_last = last;
2121  } // if
2122 
2123 #ifdef KMP_DEBUG
2124  {
2125  char *buff;
2126  // create format specifiers before the debug output
2127  buff = __kmp_str_format(
2128  "__kmp_dispatch_next: T#%%d normal case: "
2129  "p_lb:%%%s p_ub:%%%s p_st:%%%s p_last:%%p (%%d) returning:%%d\n",
2130  traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
2131  KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, p_st ? *p_st : 0, p_last,
2132  (p_last ? *p_last : 0), status));
2133  __kmp_str_free(&buff);
2134  }
2135 #endif
2136 #if INCLUDE_SSC_MARKS
2137  SSC_MARK_DISPATCH_NEXT();
2138 #endif
2139  OMPT_LOOP_END;
2140  KMP_STATS_LOOP_END;
2141  return status;
2142 }
2143 
2144 template <typename T>
2145 static void __kmp_dist_get_bounds(ident_t *loc, kmp_int32 gtid,
2146  kmp_int32 *plastiter, T *plower, T *pupper,
2147  typename traits_t<T>::signed_t incr) {
2148  typedef typename traits_t<T>::unsigned_t UT;
2149  kmp_uint32 team_id;
2150  kmp_uint32 nteams;
2151  UT trip_count;
2152  kmp_team_t *team;
2153  kmp_info_t *th;
2154 
2155  KMP_DEBUG_ASSERT(plastiter && plower && pupper);
2156  KE_TRACE(10, ("__kmpc_dist_get_bounds called (%d)\n", gtid));
2157 #ifdef KMP_DEBUG
2158  typedef typename traits_t<T>::signed_t ST;
2159  {
2160  char *buff;
2161  // create format specifiers before the debug output
2162  buff = __kmp_str_format("__kmpc_dist_get_bounds: T#%%d liter=%%d "
2163  "iter=(%%%s, %%%s, %%%s) signed?<%s>\n",
2164  traits_t<T>::spec, traits_t<T>::spec,
2165  traits_t<ST>::spec, traits_t<T>::spec);
2166  KD_TRACE(100, (buff, gtid, *plastiter, *plower, *pupper, incr));
2167  __kmp_str_free(&buff);
2168  }
2169 #endif
2170 
2171  if (__kmp_env_consistency_check) {
2172  if (incr == 0) {
2173  __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited, ct_pdo,
2174  loc);
2175  }
2176  if (incr > 0 ? (*pupper < *plower) : (*plower < *pupper)) {
2177  // The loop is illegal.
2178  // Some zero-trip loops maintained by compiler, e.g.:
2179  // for(i=10;i<0;++i) // lower >= upper - run-time check
2180  // for(i=0;i>10;--i) // lower <= upper - run-time check
2181  // for(i=0;i>10;++i) // incr > 0 - compile-time check
2182  // for(i=10;i<0;--i) // incr < 0 - compile-time check
2183  // Compiler does not check the following illegal loops:
2184  // for(i=0;i<10;i+=incr) // where incr<0
2185  // for(i=10;i>0;i-=incr) // where incr<0
2186  __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrIllegal, ct_pdo, loc);
2187  }
2188  }
2189  th = __kmp_threads[gtid];
2190  team = th->th.th_team;
2191  KMP_DEBUG_ASSERT(th->th.th_teams_microtask); // we are in the teams construct
2192  nteams = th->th.th_teams_size.nteams;
2193  team_id = team->t.t_master_tid;
2194  KMP_DEBUG_ASSERT(nteams == (kmp_uint32)team->t.t_parent->t.t_nproc);
2195 
2196  // compute global trip count
2197  if (incr == 1) {
2198  trip_count = *pupper - *plower + 1;
2199  } else if (incr == -1) {
2200  trip_count = *plower - *pupper + 1;
2201  } else if (incr > 0) {
2202  // upper-lower can exceed the limit of signed type
2203  trip_count = (UT)(*pupper - *plower) / incr + 1;
2204  } else {
2205  trip_count = (UT)(*plower - *pupper) / (-incr) + 1;
2206  }
2207 
2208  if (trip_count <= nteams) {
2209  KMP_DEBUG_ASSERT(
2210  __kmp_static == kmp_sch_static_greedy ||
2211  __kmp_static ==
2212  kmp_sch_static_balanced); // Unknown static scheduling type.
2213  // only some teams get single iteration, others get nothing
2214  if (team_id < trip_count) {
2215  *pupper = *plower = *plower + team_id * incr;
2216  } else {
2217  *plower = *pupper + incr; // zero-trip loop
2218  }
2219  if (plastiter != NULL)
2220  *plastiter = (team_id == trip_count - 1);
2221  } else {
2222  if (__kmp_static == kmp_sch_static_balanced) {
2223  UT chunk = trip_count / nteams;
2224  UT extras = trip_count % nteams;
2225  *plower +=
2226  incr * (team_id * chunk + (team_id < extras ? team_id : extras));
2227  *pupper = *plower + chunk * incr - (team_id < extras ? 0 : incr);
2228  if (plastiter != NULL)
2229  *plastiter = (team_id == nteams - 1);
2230  } else {
2231  T chunk_inc_count =
2232  (trip_count / nteams + ((trip_count % nteams) ? 1 : 0)) * incr;
2233  T upper = *pupper;
2234  KMP_DEBUG_ASSERT(__kmp_static == kmp_sch_static_greedy);
2235  // Unknown static scheduling type.
2236  *plower += team_id * chunk_inc_count;
2237  *pupper = *plower + chunk_inc_count - incr;
2238  // Check/correct bounds if needed
2239  if (incr > 0) {
2240  if (*pupper < *plower)
2241  *pupper = traits_t<T>::max_value;
2242  if (plastiter != NULL)
2243  *plastiter = *plower <= upper && *pupper > upper - incr;
2244  if (*pupper > upper)
2245  *pupper = upper; // tracker C73258
2246  } else {
2247  if (*pupper > *plower)
2248  *pupper = traits_t<T>::min_value;
2249  if (plastiter != NULL)
2250  *plastiter = *plower >= upper && *pupper < upper - incr;
2251  if (*pupper < upper)
2252  *pupper = upper; // tracker C73258
2253  }
2254  }
2255  }
2256 }
2257 
2258 //-----------------------------------------------------------------------------
2259 // Dispatch routines
2260 // Transfer call to template< type T >
2261 // __kmp_dispatch_init( ident_t *loc, int gtid, enum sched_type schedule,
2262 // T lb, T ub, ST st, ST chunk )
2263 extern "C" {
2264 
2281 void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
2282  enum sched_type schedule, kmp_int32 lb,
2283  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk) {
2284  KMP_DEBUG_ASSERT(__kmp_init_serial);
2285 #if OMPT_SUPPORT && OMPT_OPTIONAL
2286  OMPT_STORE_RETURN_ADDRESS(gtid);
2287 #endif
2288  __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2289 }
2293 void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
2294  enum sched_type schedule, kmp_uint32 lb,
2295  kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk) {
2296  KMP_DEBUG_ASSERT(__kmp_init_serial);
2297 #if OMPT_SUPPORT && OMPT_OPTIONAL
2298  OMPT_STORE_RETURN_ADDRESS(gtid);
2299 #endif
2300  __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2301 }
2302 
2306 void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
2307  enum sched_type schedule, kmp_int64 lb,
2308  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk) {
2309  KMP_DEBUG_ASSERT(__kmp_init_serial);
2310 #if OMPT_SUPPORT && OMPT_OPTIONAL
2311  OMPT_STORE_RETURN_ADDRESS(gtid);
2312 #endif
2313  __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2314 }
2315 
2319 void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
2320  enum sched_type schedule, kmp_uint64 lb,
2321  kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk) {
2322  KMP_DEBUG_ASSERT(__kmp_init_serial);
2323 #if OMPT_SUPPORT && OMPT_OPTIONAL
2324  OMPT_STORE_RETURN_ADDRESS(gtid);
2325 #endif
2326  __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2327 }
2328 
2338 void __kmpc_dist_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
2339  enum sched_type schedule, kmp_int32 *p_last,
2340  kmp_int32 lb, kmp_int32 ub, kmp_int32 st,
2341  kmp_int32 chunk) {
2342  KMP_DEBUG_ASSERT(__kmp_init_serial);
2343 #if OMPT_SUPPORT && OMPT_OPTIONAL
2344  OMPT_STORE_RETURN_ADDRESS(gtid);
2345 #endif
2346  __kmp_dist_get_bounds<kmp_int32>(loc, gtid, p_last, &lb, &ub, st);
2347  __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2348 }
2349 
2350 void __kmpc_dist_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
2351  enum sched_type schedule, kmp_int32 *p_last,
2352  kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st,
2353  kmp_int32 chunk) {
2354  KMP_DEBUG_ASSERT(__kmp_init_serial);
2355 #if OMPT_SUPPORT && OMPT_OPTIONAL
2356  OMPT_STORE_RETURN_ADDRESS(gtid);
2357 #endif
2358  __kmp_dist_get_bounds<kmp_uint32>(loc, gtid, p_last, &lb, &ub, st);
2359  __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2360 }
2361 
2362 void __kmpc_dist_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
2363  enum sched_type schedule, kmp_int32 *p_last,
2364  kmp_int64 lb, kmp_int64 ub, kmp_int64 st,
2365  kmp_int64 chunk) {
2366  KMP_DEBUG_ASSERT(__kmp_init_serial);
2367 #if OMPT_SUPPORT && OMPT_OPTIONAL
2368  OMPT_STORE_RETURN_ADDRESS(gtid);
2369 #endif
2370  __kmp_dist_get_bounds<kmp_int64>(loc, gtid, p_last, &lb, &ub, st);
2371  __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2372 }
2373 
2374 void __kmpc_dist_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
2375  enum sched_type schedule, kmp_int32 *p_last,
2376  kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st,
2377  kmp_int64 chunk) {
2378  KMP_DEBUG_ASSERT(__kmp_init_serial);
2379 #if OMPT_SUPPORT && OMPT_OPTIONAL
2380  OMPT_STORE_RETURN_ADDRESS(gtid);
2381 #endif
2382  __kmp_dist_get_bounds<kmp_uint64>(loc, gtid, p_last, &lb, &ub, st);
2383  __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2384 }
2385 
2399 int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2400  kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st) {
2401 #if OMPT_SUPPORT && OMPT_OPTIONAL
2402  OMPT_STORE_RETURN_ADDRESS(gtid);
2403 #endif
2404  return __kmp_dispatch_next<kmp_int32>(loc, gtid, p_last, p_lb, p_ub, p_st
2405 #if OMPT_SUPPORT && OMPT_OPTIONAL
2406  ,
2407  OMPT_LOAD_RETURN_ADDRESS(gtid)
2408 #endif
2409  );
2410 }
2411 
2415 int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2416  kmp_uint32 *p_lb, kmp_uint32 *p_ub,
2417  kmp_int32 *p_st) {
2418 #if OMPT_SUPPORT && OMPT_OPTIONAL
2419  OMPT_STORE_RETURN_ADDRESS(gtid);
2420 #endif
2421  return __kmp_dispatch_next<kmp_uint32>(loc, gtid, p_last, p_lb, p_ub, p_st
2422 #if OMPT_SUPPORT && OMPT_OPTIONAL
2423  ,
2424  OMPT_LOAD_RETURN_ADDRESS(gtid)
2425 #endif
2426  );
2427 }
2428 
2432 int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2433  kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st) {
2434 #if OMPT_SUPPORT && OMPT_OPTIONAL
2435  OMPT_STORE_RETURN_ADDRESS(gtid);
2436 #endif
2437  return __kmp_dispatch_next<kmp_int64>(loc, gtid, p_last, p_lb, p_ub, p_st
2438 #if OMPT_SUPPORT && OMPT_OPTIONAL
2439  ,
2440  OMPT_LOAD_RETURN_ADDRESS(gtid)
2441 #endif
2442  );
2443 }
2444 
2448 int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2449  kmp_uint64 *p_lb, kmp_uint64 *p_ub,
2450  kmp_int64 *p_st) {
2451 #if OMPT_SUPPORT && OMPT_OPTIONAL
2452  OMPT_STORE_RETURN_ADDRESS(gtid);
2453 #endif
2454  return __kmp_dispatch_next<kmp_uint64>(loc, gtid, p_last, p_lb, p_ub, p_st
2455 #if OMPT_SUPPORT && OMPT_OPTIONAL
2456  ,
2457  OMPT_LOAD_RETURN_ADDRESS(gtid)
2458 #endif
2459  );
2460 }
2461 
2468 void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid) {
2469  __kmp_dispatch_finish<kmp_uint32>(gtid, loc);
2470 }
2471 
2475 void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid) {
2476  __kmp_dispatch_finish<kmp_uint64>(gtid, loc);
2477 }
2478 
2482 void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid) {
2483  __kmp_dispatch_finish<kmp_uint32>(gtid, loc);
2484 }
2485 
2489 void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid) {
2490  __kmp_dispatch_finish<kmp_uint64>(gtid, loc);
2491 }
2494 //-----------------------------------------------------------------------------
2495 // Non-template routines from kmp_dispatch.cpp used in other sources
2496 
2497 kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker) {
2498  return value == checker;
2499 }
2500 
2501 kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker) {
2502  return value != checker;
2503 }
2504 
2505 kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker) {
2506  return value < checker;
2507 }
2508 
2509 kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker) {
2510  return value >= checker;
2511 }
2512 
2513 kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker) {
2514  return value <= checker;
2515 }
2516 
2517 kmp_uint32
2518 __kmp_wait_4(volatile kmp_uint32 *spinner, kmp_uint32 checker,
2519  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
2520  void *obj // Higher-level synchronization object, or NULL.
2521  ) {
2522  // note: we may not belong to a team at this point
2523  volatile kmp_uint32 *spin = spinner;
2524  kmp_uint32 check = checker;
2525  kmp_uint32 spins;
2526  kmp_uint32 (*f)(kmp_uint32, kmp_uint32) = pred;
2527  kmp_uint32 r;
2528 
2529  KMP_FSYNC_SPIN_INIT(obj, CCAST(kmp_uint32 *, spin));
2530  KMP_INIT_YIELD(spins);
2531  // main wait spin loop
2532  while (!f(r = TCR_4(*spin), check)) {
2533  KMP_FSYNC_SPIN_PREPARE(obj);
2534  /* GEH - remove this since it was accidentally introduced when kmp_wait was
2535  split. It causes problems with infinite recursion because of exit lock */
2536  /* if ( TCR_4(__kmp_global.g.g_done) && __kmp_global.g.g_abort)
2537  __kmp_abort_thread(); */
2538  KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
2539  }
2540  KMP_FSYNC_SPIN_ACQUIRED(obj);
2541  return r;
2542 }
2543 
2544 void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
2545  kmp_uint32 (*pred)(void *, kmp_uint32),
2546  void *obj // Higher-level synchronization object, or NULL.
2547  ) {
2548  // note: we may not belong to a team at this point
2549  void *spin = spinner;
2550  kmp_uint32 check = checker;
2551  kmp_uint32 spins;
2552  kmp_uint32 (*f)(void *, kmp_uint32) = pred;
2553 
2554  KMP_FSYNC_SPIN_INIT(obj, spin);
2555  KMP_INIT_YIELD(spins);
2556  // main wait spin loop
2557  while (!f(spin, check)) {
2558  KMP_FSYNC_SPIN_PREPARE(obj);
2559  /* if we have waited a bit, or are noversubscribed, yield */
2560  /* pause is in the following code */
2561  KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
2562  }
2563  KMP_FSYNC_SPIN_ACQUIRED(obj);
2564 }
2565 
2566 } // extern "C"
2567 
2568 #ifdef KMP_GOMP_COMPAT
2569 
2570 void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
2571  enum sched_type schedule, kmp_int32 lb,
2572  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk,
2573  int push_ws) {
2574  __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk,
2575  push_ws);
2576 }
2577 
2578 void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
2579  enum sched_type schedule, kmp_uint32 lb,
2580  kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk,
2581  int push_ws) {
2582  __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk,
2583  push_ws);
2584 }
2585 
2586 void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
2587  enum sched_type schedule, kmp_int64 lb,
2588  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk,
2589  int push_ws) {
2590  __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk,
2591  push_ws);
2592 }
2593 
2594 void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
2595  enum sched_type schedule, kmp_uint64 lb,
2596  kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk,
2597  int push_ws) {
2598  __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk,
2599  push_ws);
2600 }
2601 
2602 void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid) {
2603  __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc);
2604 }
2605 
2606 void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid) {
2607  __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc);
2608 }
2609 
2610 void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid) {
2611  __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc);
2612 }
2613 
2614 void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid) {
2615  __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc);
2616 }
2617 
2618 #endif /* KMP_GOMP_COMPAT */
2619 
2620 /* ------------------------------------------------------------------------ */
__kmpc_dispatch_fini_8
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2475
__kmpc_dist_dispatch_init_4
void __kmpc_dist_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 *p_last, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
Definition: kmp_dispatch.cpp:2338
__kmpc_dispatch_next_4u
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
Definition: kmp_dispatch.cpp:2415
__kmpc_dispatch_init_8u
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
Definition: kmp_dispatch.cpp:2319
__kmpc_dispatch_next_4
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
Definition: kmp_dispatch.cpp:2399
kmp_sch_guided_chunked
@ kmp_sch_guided_chunked
Definition: kmp.h:341
__kmpc_dispatch_init_4
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
Definition: kmp_dispatch.cpp:2281
kmp_sch_guided_simd
@ kmp_sch_guided_simd
Definition: kmp.h:357
kmp_sch_upper
@ kmp_sch_upper
Definition: kmp.h:361
sched_type
sched_type
Definition: kmp.h:336
kmp_nm_lower
@ kmp_nm_lower
Definition: kmp.h:381
__kmpc_dispatch_next_8
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
Definition: kmp_dispatch.cpp:2432
kmp_nm_upper
@ kmp_nm_upper
Definition: kmp.h:408
__kmpc_dispatch_fini_8u
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2489
KMP_COUNT_VALUE
#define KMP_COUNT_VALUE(name, value)
Adds value to specified timer (name).
Definition: kmp_stats.h:887
ident
Definition: kmp.h:222
kmp_sch_auto
@ kmp_sch_auto
Definition: kmp.h:343
kmp_sch_runtime_simd
@ kmp_sch_runtime_simd
Definition: kmp.h:358
__kmpc_dispatch_fini_4u
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2482
kmp_sch_lower
@ kmp_sch_lower
Definition: kmp.h:337
kmp_ord_lower
@ kmp_ord_lower
Definition: kmp.h:363
kmp_sch_static
@ kmp_sch_static
Definition: kmp.h:339
__kmpc_dispatch_fini_4
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2468
__kmpc_dispatch_init_8
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
Definition: kmp_dispatch.cpp:2306
__kmpc_dispatch_init_4u
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
Definition: kmp_dispatch.cpp:2293
__kmpc_dispatch_next_8u
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
Definition: kmp_dispatch.cpp:2448
KMP_COUNT_BLOCK
#define KMP_COUNT_BLOCK(name)
Increments specified counter (name).
Definition: kmp_stats.h:900